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AFIT-ENS-13-M-01 

Abstract 

 

A well-known multivariate data reduction method is principal components 

analysis (PCA).  PCA transforms the variables under study into a set of components that 

are used to summarize the variation among the variables.  The benefit is the dimension of 

the data may be reduced by the descriptive power of the components, permitting tractable 

analysis on large and messy datasets.  Integral to successful PCA is determining when to 

stop extracting components – the matter is not a trivial one.   

A method that consistently produces reliable component extraction estimates is 

Horn’s test, named after researcher John L. Horn who introduced the technique in 1965.  

The result is Horn’s curve, a graphical indicator used to make a dimensionality 

assessment for any n x p matrix.  The drawback of Horn’s test is it requires – for each 

size n x p study – a large amount of random data to evaluate the hidden component 

structure.   

Leveraging the flexibility and power of the MATLAB software package, a lookup 

table interpolates nearest neighbor searches of pre-processed mean eigenvalue data to 

provide real-time results for datasets up to 1,000 variables on 7,000 samples.  The 

methodology is extended to a linear regression second-order model producing Horn’s 

curve, significantly reducing the required size of the lookup table with no loss of 

resolution into the dimensionality estimate. 
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HORN’S CURVE ESTIMATION THROUGH MULTI-DIMENSIONAL  

 

INTERPOLATION 

 

 

 

I.  Introduction 

 

1.1. Background 

 

Prevalent in the fields of applied science is the need to conduct experiments, 

collect data, and draw meaningful conclusions from the observations. Quite often data are 

multivariate and the simultaneous interactions among all the variables are of interest.  

Datasets may consist of hundreds of variables (p) and tens of thousands of samples (n).  

Contemporary data storage capacity and computer processing power means it is possible 

to access trillions of data bits with little effort or significant cost.   Field work is still alive 

and well – designing experiments, conducting tests, and recording results are still part of 

a scientist’s job description – and the ability to collaborate and instantaneously share 

information has transformed almost all walks of research.  The researcher would 

probably find it useful to describe the relationship between variables without having to 

report each and every raw combination of the data.  Ideally, no data would be discarded 

yet a way to summarize the important information is needed.   

1.2. Principal Components Analysis 

One of the most commonly used data reduction techniques is called principal 

components analysis (PCA).  The word ‘principal’ is used to mean that some components 

are significant and should be used for further analysis (a process called extraction).  

Components not significant should be discarded and excluded from additional analysis.    
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When the principal components have been identified, we speak of the dimensionality of 

the data.  For example, extracting four principal components of twelve total components 

results in a dimensionality of four. 

The goal of PCA is to describe as much of the total variance among the variables 

as possible by using a smaller number of linear combinations – the principal components 

– of the variables without losing useful information (Dillon & Goldstein, 1984).  The 

benefit of choosing to use PCA is, when adequately determined, the principal 

components orthogonally capture the information in new variables which summarize the 

original ones, simplifies the analysis, and provides additional insight to the data.  In PCA, 

information is in the form of total variance and how it is orthogonally dispersed in the 

components. 

Mathematically, the components are designed to take on as much sample variance 

as possible; each component is in fact an eigenvector of the correlation matrix.  The 

components are ranked (indexed) according to the size of their corresponding 

eigenvalues.  In this paper, PCA results from only the correlation matrix are used.  The 

rationale behind this decision is given in Chapter III. 

1.3. An Example--Determining Which Component Loadings Are Relevant 

 Loading refers to the scaling of the original variables to that of the component 

structure.  Obtaining the p x p loadings matrix is one of the first step taken after the 

components are calculated.  The elements of this matrix show each individual correlation 

of the variables to the components.  The loadings matrix will be used to draw further 

inferences regarding the nature of the components.  Let’s take a look at an example. 
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 In Table 1.1, we see a 6 x 6 loadings matrix with row and column identifiers.  The 

source of data is a study of pilots and engineers taken by groups on several motor and 

sensory tests (Bauer, 2012).  In the first column (on the left side of the matrix) are the 

names of the original study variables: ‘Intelligence’, ‘Form Relations’, etc.  The 

corresponding eigenvalues (λ) ranking of the components for each component is shown 

in Row 2.  Moving to the right along Row 2, the second column is the value 1.7751 for 

C1 (component one), the third column is 1.3544 for C2 (component two) and so on.  Each 

value in the body of the matrix field represents a loading of correlation coefficients 

between the variables and the components.  For instance, the loading for ‘Dottings’ and 

C1 equals -0.7239. 

Table 1.1.  Component loadings matrix of six variables. 

 

Still within Table 1.1, under each of the columns for C1, C2, C3, C4, and C5 are a number 

of bold and/or underlined values.  Bold font indicates a loading strength between [0.5, 1] 

or [-1, 0.5] and underlined values are the largest loading for a particular variable.  Notice 

that C1 has four such loadings under it corresponding to ‘Intelligence’, ‘Dynamometer’, 

‘Dottings’, and ‘Perseverance’.  Moving to C2, there is only one such loading (‘Form 

Data Size 

(40x6) 
Correlation Matrix Derived Eigenvalues 

1 1.7751   2 1.3544   3 1.0727   4 0.8148   5 0.5306   6 0.4524   

Variable Name 
Component Number (Ci) 

C1 C2 C3 C4 C5 C6 

Intelligence -0.5361 -0.4614 -0.4783 0.3546 -0.1532 -0.3489 

Form Relations 0.1294 -0.8696 0.1816 0.1188 -0.2041 0.3719 

Dynamometer -0.5135 0.2539 0.4484 0.6479 0.1883 0.1248 

Dottings -0.7239 0.3660 0.1103 -0.2215 -0.5148 0.1258 

Sensory 0.4155 0.4142 -0.6492 0.3604 -0.1466 0.2879 

Perseverance -0.7145 -0.1237 -0.4198 -0.2761 0.3789 0.2795 
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Relations’) and similar patterns emerge for C3, C4, and C5.  We observe that C6 has no  

bold values in its column, indicating it has no strong correlation to any variable. 

 The analysis thus far appears mundane.  If we take a closer look, this time from a 

perspective of the variables, we see that four variables load to one component but the 

remaining two, ‘Dynamometer’ and ‘Dottings’, each load under two components.  

Perhaps the level of correlation lends insight into what is going on but we have no such 

luck.  Instead, we are led to the observation that ‘Dynamometer’ is moderately negatively 

correlated to C1 (-0.5135) and stronger positively correlated (0.6479) to C4.  The pattern 

for ‘Dottings’ is equally confounding; it is strongly negatively correlated to C1 (-0.7239) 

and lesser so to C5 (-0.6492).  We desire good summarization power in the components 

but determining how important C1 and C5 are to ‘Dottings’ is not clear.  It is incorrect to 

assume we will take the larger loadings value of the two components because this 

approach violates our intention of explaining maximum total variance.  In the case of 

‘Dynamometer’, we would lose ((1.775-0.8148)/6)100 = 16% variance in summarizing 

power if we adopt this strategy.   

 We are seeing these artifacts because the component structure is orthogonal and 

each component will explain (or assume) as much of the total variance as possible.  The 

variance assumption process by the components is mutually exclusive and collectively 

exhaustive:  The first component explains the largest proportion of total variance, the 

second component assumes the next highest proportion, and so on until the last 

component explains the remaining amount.  As such, the structure expands to fill the 

‘variance space’ provided but not all components assume an equal share (the exception 
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being a perfectly orthogonal set of study variables which yield a correlation matrix equal 

to the identity matrix).  It is justified to be suspect of components with lower ranked 

eigenvalues that load just one variable, especially if the variable has loaded to an earlier 

component of a higher rank. In these cases, loadings values should not be the primary 

discriminator for principal component selection.  It can be shown that such cases 

represent mathematically true results with no practical interpretation.  We are, in some 

form, being misled by this sort of variable-component relationship.  What we need is a 

way to determine the significance of the components.  This situation is indicative of the 

type problem this thesis seeks to find a solution for.   

1.4. Impact of Keeping The Wrong Number of Components:  Part I 

 In the pilots and engineers example, we observed a myriad of difficulties in pin 

pointing the loadings relevance.  We can distill all the cases to just two scenarios: Too 

few or too many components. 

 If too few components are kept, we lose summarizing power because we discard 

some proportion of the total variance.  Because the variance dispersion among 

components is relative to the number of variables in the study, we would omit a nominal 

amount of variance if there are hundreds of components available and we choose to 

discard many dozens of the smallest components.  However, if just a few variables are in 

the data, omission of one or two components from further analysis may result in  

significant loss of information.  We may also find the instance of one or two components 

that explain most or all of the variables.  While such an act could be considered a feat of 

summarization, we are likely more interested in the composite aspect of the component;  
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that is, what hidden feature of the variables does the component explain? 

 Conversely, if too many components are kept then we have the case of the 

‘phantom’ loading entry; a single, strong correlation that has no practical significance.  In 

his paper Stopping Rules in Principal Components Analysis: A Comparison of 

Heuristical and Statistical Approaches, Jackson states that one variable significantly 

loaded to one component "...is not a satisfactory multivariate summary" (1993:2207).  In 

the case of one-variable-to-one-component, we should consider the summarization has 

been effectively watered down; why retain components that add no insight?   

 Therefore, given the considerations that too few or too many components is 

problematic, our goal should be "...to find the solution, or at least a solution that others 

will regard quite highly if not the best." (Horn & Engstrom, 1979:283) 

1.4.1.  Factor Fission 

Factor fission occurs when too many components are extracted, causing loadings 

to shift suddenly from lower dimension components to higher dimension ones.  While 

factor fission does not occur in PCA, it is a concern for factor analysis (FA).  It is 

mentioned here solely for completeness in regard to the need for an accurate assessment 

of component dimensionality.  As has been pointed out in literature, PCA and FA share 

similar methodology and both make use of the same stopping rules (Velicer, 1976:324) 

(Franklin, Gibson, Robertson, Pohlmann, & Fralish, 1995:99) (Zwick & Velicer, 

1986:433).  The interested reader is directed to the paper Factor Analysis: Limitations 

and Alternatives by Ehrenberg & Goodhardt (1976).  They provide an excellent example 

and thorough analysis of a real-world study in which factor fission occurs.  Cattell 
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 (1966:245-247) also gives discussion to factor fission and the number of factors to keep. 

 This paper does not explore further other multivariate analysis methods nor the 

factor fission phenomenon.  The solutions presented by this thesis were evaluated using 

PCA methods only; however, by the preceding remarks noted these solutions may be 

extended as appropriate to factor analytic techniques. 

1.5. Component Extraction Stopping Rules 

As we have seen, determining the number of principal components is not always a 

straight-forward process.  Fortunately, sound guidance exists to help with this task in the 

form of component extraction stopping rules.  Many such rules exist; however, we shall 

see that not all of them perform to the same level of accuracy – there is usually an inverse 

relationship between the accuracy of a rule and how easy it is to apply (that is, simple 

rules trade accuracy in terms of ease of use and vice versa).   

1.6. Analyst Subjectivity 

The complex nature of human behavior has not yet been broached.  This is not to 

say analysts play favorites in reaching conclusions, only that varied personal experiences, 

knowledge, and research goals exist in carrying out a study and interpreting the results.  

An ideal methodology to determine the number of principal components to retain should 

minimize subjective evaluation. 

1.7. Problem Statement 

The need exists for easy access to an accurate visual analysis component 

 extraction stopping rule.  A worthwhile endeavor is to design the solution so that it 

minimizes the amount of interpretation on behalf of the analyst yet leaves enough latitude 
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for unique conditions or circumstances that exist for all research projects (that is, it does 

not tie the hands of the analyst by offering too specific or restrictive results). 

1.8. Research Objectives  

 The primary objective of this research is to develop an accurate tool determine the 

number of principal components to retain when conducting principal component analysis.  

The strategy to achieve this objective is to survey published literature for visual analysis 

stopping rule candidates, select an appropriate candidate, and automate (i.e., create a 

computer algorithm of) the candidate rule to provide the user/analyst with both a 

computer program input interface for data selection and a visual output providing a 

synopsis of information captured by the principal components in both graphical and 

tabulated format.  Rather than develop new theory, this thesis uses existing theory to 

develop this new analytical capability. 

 The secondary objective is to create a parsimonious solution, which minimizes the 

size and complexity of the analytical tool created.  Once a fully functional algorithm is 

created, the algorithm will be refined to enhance user-friendliness, provide guidelines to 

interpret the output, and reduce the data footprint required to run the algorithm.   

 The intended users of the program are practitioners who need to perform PCA, 

have access to a computer running MATLAB®  (© 1994-2013 The MathWorks, Inc.) 

Version 7 (Release 14) or greater, and understand their data enough to format it properly 

for the algorithm.  Users require only limited MATLAB skills to enjoy the benefits 

achieved by employing the automated rule.  Finally, any instructions or interface with the 

user will be free of unnecessary and unclear jargon. 
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1.9. Key Concepts 

Before proceeding, key concepts should be introduced.  They are used throughout 

the thesis and being familiar with them will orient later discussion. 

1.9.1. Sampled vs. Random Data 

Sampled data are gathered from a real-world experiment.  Random data, on the 

other hand, come from a carefully structured simulation model meant to mimic or make 

use of an underlying probability distribution of the system being observed.  Random data 

does not exist outside the computer.  The methodology presented makes extensive use of 

both kinds of data.  To be distinct in usage, the data origin will be identified. 

1.9.2. Use of Ambiguous Terms 

Within this thesis, the words ‘factor’ and ‘component’, ‘variable’ and ‘feature’, 

and ‘observation’ and ‘sample’ are considered synonymous, respectively.  The author 

takes no argument with purists and only strives to be flexible in the chosen vocabulary.  

1.10. Assumptions/Limitations 

All software have design limitations and understanding not only how to use the 

software but what goes on (within reason) inside the ‘black box’ is worthy advice.  The 

MATLAB software package was used to develop the solutions for this thesis and where 

possible, built-in functions (those that are provided as  part of the licensed MATLAB 

library) are used.  There are two reasons for this.  (1) These functions are generally 

optimized for speed and accuracy and (2) built-in functions simplify script structure, 

streamline logic, and cut-down on debugging and troubleshooting.  The built-in functions 

needed to code all techniques for this project have been vetted by the author during 
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multivariate analysis coursework (Bauer, 2012).  The vetting process consisted of coding 

individually each matrix or matrix function and then comparing the results of similar 

MATLAB functions on the same input to produce identical results. 

Because infinite combinations of the number of observations, n, and the 

dimension of the data, p, exist there is a limitation to the size of problem the algorithm 

will be able to solve.  A survey of data dimensions found in published analyses was used 

to determine the dimensionality of data the algorithm can support.  Additional technical 

assumptions and limitations regarding data dimensionality are discussed in Chapter III, 

Methodology. 

1.11. Implications 

This thesis does not make the claim of returning an absolute determination of 

what dimension a particular study is.  Such a statement, if it is possible to prove, is not 

within the scope of this thesis.  There is as much art as there is science in coming to a 

sound conclusion when performing PCA.  Consider the outcome of this work as another 

tool for the multivariate toolbox.  In the output analysis summary (full description in 

Chapter IV, Results and Analysis), an estimate of dimensionality is given.  A satisfactory 

PCA assessment is dependent upon other considerations at play from which the analyst 

must draw forth and distill into a meaningful solution. 

1.12. Notation 

Table 1.2 shows how variables, notation, and symbols are used in this thesis.  

Attention was given to use to common statistical terminology.  Cells containing " - " 

signify meaning or usage has no amplifying information. 
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Table 1.2.  Symbols and their meanings used in this thesis. 

Symbol or  

Abbreviation Meaning Usage 

2OM 
Second-Order 

Model 

The linear regression least-squares fitted solution 

algorithm for estimating Horn’s curve for random 

data using a modified form of the lookup table T. 

n - 
The number of observations in a dataset; 

The number of rows in a matrix. 

p - 
The number of variables in a dataset; 

The number of columns in a matrix. 

n x p n by p Size of a matrix. 

(p, n) Point (p, n) 

Two dimensional placeholder representation of a 

data 

matrix in Cartesian plane coordinate space; a point 

mapped into the lookup tables. 

(p′, n′) 
User-supplied 

parameters 

Pronounced "p prime, n prime"  it is the point-of-

interest given as input to the solution algorithms.   

Ci - Component number or index. 

i.i.d. - Independent and identically distributed. 

Inf Infinite 

Arithmetic representation of values too large to 

represent in conventional floating-point format such 

as division by zero (The MathWorks, 2012). 

K1 Kaiser’s Criterion 

A component extraction rule: keep all eigenvalues ≥ 

1.0.  On graphs, occurs as a straight line at y = 1.0 

running the width of the horizontal axis 

MEV Mean Eigenvalue 

Refers to the results of completing Horn’s 

algorithm for random data.  Usage is not applicable 

to scree line results derived from sampled (real-

world) datasets. 

n
(-)

, n
(+)

 -  
Lower, upper (respectively) NN variables for n 

chosen so that 
( ) ( )'n n n   are closest. 

NaN Not a number 

A data type that results from operations having 

undefined numerical results (The MathWorks, 

2012). 

NN 
Upper & Lower 

Nearest Neighbor 

Given a (p′, n′), search T for values of p and n 

immediately adjacent to the point-of-interest. 

Concept extends to S and Y. 

p
(-)

, p
(+)

 - 
Lower, upper (respectively) NN variables for p 

chosen so that 
( ) ( )'p p p    are closest. 

(   )p p
R  - Correlation matrix of p rows by p columns. 

ROI Region-of-Interest 
The 2D area of mapped (preprocessed) MEV data 

for select sizes and intervals of (p, n). 
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T - 

A user-defined total variance target to be explained 

by full or partial selection of component 

eigenvalues. 

S 
Row and column 

truncated T 

Rows containing p
(-)

, p
(+)

 information used for 

nearest neighbor search refinement (child of T) 

T 
Lookup table 

matrix 

Shorthand reference to the matrix storing the 

mapped  ROI data.  In Appendix II, the actual 

lookup table variable name is tablex (MEV) or 

tablexbeta (2OM). 

(   )n p
X  - 

Data matrix of n rows by p columns. 

- In random data, X has random variables 

~NID(0,1). 

- In sampled data, X has empirical elements. 

Y Row truncated S 

A four row, subset matrix of S used for the 

surrogate curves interpolation routine (grandchild 

of T). 

xi - A variable in a linear regression model. 

xij - A matrix data element at row i and column j. 

βi 
Lowercase (LC) 

beta 

Regression coefficient; subscript i indicates order of 

the coefficient. 

β̂  LC beta hat 
Matrix of estimated regression coefficients in the 

2OM. 

λ  LC lambda 
Eigenvalue; an element of the hidden component 

structure. 

i  LC lambda bar  
Pronounced ""; indicates the arithmetic mean of the 

eigenvalue at index i.  

ˆ
i  LC lambda hat  

Pronounced "lambda hat"; indicates the 

approximation the linear regression second-order 

model produces for the eigenvalue at index i (λi) 

1

p

i

i

x


  Uppercase sigma Generic summation of elements xi from 1 to p. 

~ Approximately Close to but not exact in value (relational). 

~NID(μ,σ
2
) - 

Normally and independently distributed of 

parameters mean μ and variance σ
2
. 

≤ 
Less than or equal 

to 
- 

≥ 
Greater than or 

equal to 
- 

± Plus or minus - 

≡ Identical to 
Denotes "is defined as."  Not to be confused with 

equality ("=") 
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≠ Not equal to - 

text MATLAB origin 

A reserved or user-defined command, function, or 

variable found in a MATLAB script (program).  

May also identify a script or data filename reference 

when highlighting adds clarity among body text. 

ε LC epsilon 

A small value approximating zero; 

significantly smaller than others in like comparison; 

an error or residual (difference between predicted 

and observed regression model values). 

 
The set of natural 

number 

Integers 1, 2, 3, ..., .  In the context of this thesis, 

the set does not include zero.  To reinforce the 

restriction, 0  is specified wherever  is used. 

 

 
  

1.13. Chapter Summary 

 PCA is a multivariate analysis technique used to summarize total variance of a 

dataset through discovery of hidden component structure.  This makes analysis more 

tractable as not all variables need to be retained for further analysis; the summarization of 

the components enables us to find new dimensions in which to express the data.   We 

learned that components are formed from linear combinations of the original variables.  

Each component represents an eigenvector and is ranked by the magnitude of the 

corresponding eigenvalue.  The orthogonal design of the components is such that the first 

principal component assumes as much variance as possible, the second assumes as large a 

portion of the remaining share as it can, and so on until the last component accounts for 

the remaining small fraction.   

We looked at an example of a loadings matrix which is a scaling (or correlation) 

of the original variables with the components.  We saw that the loadings matrix can be 

unclear to decipher and that it is possible for too few or too many components to be 

included in the analysis.  Hence, there is a need to apply a stopping rule so that one  
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knows when the estimated dimensionality of the components has been determined.  

Finally, key terms and definitions of principal components analysis were 

introduced.  The research objective is to review the literature for an accurate existing 

visual analysis component extraction stopping rule and automate it.  Automation will 

help minimize analyst subjectivity during PCA.  The finished algorithm should present an 

easy-to-use interface for the analyst and provide an output analysis product with relevant 

summary information. 
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II. Literature Review 

 

2.1. Historical Perspectives 

The purpose of this chapter is to provide relevant background information 

regarding principal components visual analysis stopping rules.  Because the methods 

discussed are decades old yet still used largely as first developed, understanding the 

scope of problems they were invented to solve and limitations in application provides 

context to carry forward to later sections of the thesis. 

Three such rules were found in the published literature.  The reader may find the 

discussion on test results of these various techniques enlightening – the findings of three 

different papers under at least as many authors are shared – and the perils of 

dimensionality assessments done poorly.   

Lastly, we examine what a realistic expectation is for how large a multivariate  

problem can be evaluated.  We do this by surveying the sizes of data in published 

researched or of datasets posted to public access websites. 

2.1.1. A Note About Verbiage 

Because the literature review is a walk through history, the vocabulary 

encountered is a mix of old and new.  Where possible, explanatory and supporting 

graphics make use of the author’s word choices and, if available, the size of data used in 

the article.  Doing so not only makes it easier to relate a figure to the story in the 

literature, but the authors, some of whom are no longer with us, are given a chance to 

share their ideas again.  Understanding how thoughts and concepts were developed leads 

to deeper knowledge of the solutions offered. Therefore, the reader should expect to see 
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apparently inconsistent word usage in different parts of the literature review.  By the end 

of this chapter, standard terminology is adopted. 

2.2. Graphical PCA Techniques  

A good place to start a literature review of principal components analysis (PCA) 

is with the groundbreaking work done on the topic in the 1960s.  The goal of PCA then 

was the same as it is today:  Given a multivariate data set, provide to the researcher a 

reliable statistical tool to either (1) describe the variance shared among variables in a 

study or (2) parsimoniously describe the total variance of those variables (Velicer, 1976).  

The work done in those decades is fundamental to an understanding of how PCA is 

carried out today.  The theory and findings of early researchers remain quite relevant and 

in use. Therefore, not only is a survey of legacy material justified, it should be done as 

due diligence because it is in the original papers that the ground breaking authors share 

the theory, application, limitations, and pitfalls of their accomplishments. 

Multiple pioneers worked to build the PCA toolbox and a few names and 

techniques stand out.  Three stopping rules requiring visual analysis are (in chronological 

order of first publication) Henry Kaiser’s eigenvalue > 1.0 criterion, John Horn’s curve, 

and Raymond Cattell’s scree plot.  All were developed before inexpensive and powerful 

computers were commonplace. 

2.2.1. Scree Line Definition 

Fundamental in each rule is the use of a scree line.  A scree line is simply a line 

drawn in Cartesian coordinates (x-y plane) between each eigenvalue (the y-axis or 

ordinate) as the eigenvalues are plotted over the integer index of the corresponding 
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component (along the x-axis or abscissa).  In this thesis, the scree line is always 

represented by a blue line connected to large orange points when it is drawn in figures.  

The description ‘scree’ was chosen (not by this author, but others) because of its 

similarity to the rubble that falls off a cliff and slides to the bottom of the hill. 

2.2.2. Latent Roots 

For each of the methods surveyed, a "latent root" is equivalent to a component 

(eigenvector) and the ordering sequence is determined by magnitude (eigenvalue; λ).  

Both are results of eigendecomposition of the correlation matrix R.   

2.2.3. Kaiser’s Criterion  

This is perhaps the most common stopping rule (Velicer, 1976) because it is the easiest to 

apply.  Found abbreviated as K1 in the literature (Zwick & Velicer, 1986), it states that 

the number of factors to be retained is equal to the number of latent roots greater than one  

in the observed correlation matrix (Kaiser, 1960).  As a visual element in a scree line 

graph, Kaiser’s criterion appears as a straight line at λ = 1.0 running the length of the 

horizontal axis over successive components Ci.  The rule is simple: Components above 

the line are principal, the ones below the line are not.  The rationale can be considered 

from the perspective of what makes an effective executive summary: One would not 

write a lengthier synopsis than the source is long.   

 Figure 2.1 shows an example of the rule being applied.  Here, components C1, C2, 

and C3 have eigenvalues greater than one and are above the K1 line – they would be 

retained as principal components. The rest (C4 - C13) are below it (1 ≥ λ > 0) and would 

be discarded as not significant to further principal components analysis. 
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Figure 2.1.  Kaiser's criterion is always found at λ = 1.0.  Size of data shown is 178x13. 

2.2.3.1. Considerations Regarding Kaiser’s Criterion 

Kaiser's criterion performs in a binary manner; that is, the distinction is either 

above or below λ = 1.0.  There might be subtleties that require closer inspection.  Is there 

a practical significant difference between λ = 1.01 and λ = 0.99?  Horn has pointed out 

K1fails to recognize sampling error due in part to the assumption that K1 operates on 

population parameters assuming infinite sample size (Horn, 1965:181). 

2.2.4. Horn’s Test 

 John L. Horn’s paper A Rationale and Test for The Number of Factors in Factor 

Analysis (1965) describes what has come to be known as Horn’s test or Horn’s 

procedure.  Also called parallel analysis or PA (Zwick & Velicer, 1986) (Franklin, 

Gibson, Robertson, Pohlmann, & Fralish, 1995), Horn begins with the following theory.  

If we let k be large and if k sets of size n x p are drawn randomly from a population of 

numbers independently and identically distributed (i.i.d.) according to the normal 
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probability density function, the p x p matrix of correlation coefficients R will 

approximate an identity matrix.  Within R is a set of latent, positively-valued roots and 

each root accounts for some amount of variance within each p inter-correlated variables.  

As in K1, these latent roots are eigenvectors and are ranked according to the size of the 

eigenvalues from eigendecomposition of R.  What is new is Horn’s curve is formed from 

the means of each ranked eigenvalue (amplification of the technical details is given in 

Chapter III).  Should an infinite sample size be considered, all correlation coefficients 

will equal 1.0.  In an actual experiment, however, the researcher must contend with a 

much smaller sample size and the accompanying sampling error and least-squares 

 

Figure 2.2.  Horn’s curve example for a sampled dataset. The point p/2 is approximated 

between C6 and C7.  Size of data shown is 178x13. 

‘bias’ (1965:180).  If we consider these elements as simply ‘error,’ then we can illustrate 

how the combination of the two has inflated the correlation in R for the first p/2 

components.  In Figure 2.2, the scree line represents the data sample.  By comparing its 
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slope to that of the error induced curvature for the  population (red line; Horn’s curve), 

we can measure the difference between the two, adjust the analysis for it, and reach a 

reasonable conclusion of how much of the variance is due to sampling error.  

 What Horn proposes is a method to separate signal from noise; in other words,  

distinguish meaningful information in the data by adjusting for the amount of error 

expected due to random chance.  Therefore, an estimate of the level of noise in a sample 

provides an indication which components should be considered for extraction.  Expressed 

graphically, Horn's curve estimates the pure error in the sample.  Eigenvalues above the 

curve contain useful information; eigenvalues below the curve (and especially beyond 

p/2) are ‘noisy’ and should be discarded. 

2.2.4.1. Considerations Regarding Horn’s Test 

 Horn’s test is not widely used because it requires a large amount of simulated data 

to be generated for each n x p of interest (Monte Carlo simulation of repeated random 

draws from a standard normal probability distribution).  As such, it carries a data 

footprint with it in the form of preprocessed data tables or requires lengthy on-the-fly 

calculations.  Monte Carlo simulations for large n x p can take a significant amount of 

time to complete and if there is another stopping rule available, it is possible practitioners 

would prefer to use the quicker solution.  Because modern computers can make easy 

work of the techniques Horn describes, this limitation can be mitigated. 

2.2.5. Cattell’s Scree Plot 

Introduced by Raymond B. Cattell (1966) the scree plot begins with a typical 

scree line and then looks for breaks in the scree line slope.  To perform the scree plot test, 
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the scree line is first drawn.  Any abrupt changes (or breaks) in slope along the scree line 

are noted, particularly the first one to occur (i.e., closest to the vertical axis).  Next, the 

analyst traces a line segment using two points – the first at the last eigenvalue in the 

sequence (at Cp), the second at the eigenvalue where the break in slope was noted – and 

 

Figure 2.3.  Scree plot illustrating three possible breaks in slope: Break #1 retains three 

roots, Break #2 retains five roots, and Break #3 retains seven roots. 

retains the eigenvalues above the traced line and discards the ones below it.  Because 

each eigenvalue represents one corresponding component, by corollary an estimation of 

dimensionality has been made.  Figure 2.3. illustrates the concept; the black, green, and 

red lines are all drawn in the manner described. 

 Cattell admits there is an art to the effective use of this technique and the 

application requires a thorough understanding of the process subtleties (1966:256-261).  

When using this method, questions to ask are "Is there more than one break indicating 

multi-modal data?", "How should the inherent changes in line inflection be evaluated?"  
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Figure 2.4.  Scree line with no apparent breaks in slope. 

and "What if there are no apparent breaks in the scree line?"  

  In concluding his paper, Cattell states (p. 273) “There is no true thing as ‘the true 

number of factors to extract’....Consequently, the cut-off point in extraction is best 

decided by a conception of non-trivial common variance…”  He then provides a series of  

suggestions to consider, all of which are not applicable to visual analysis techniques so 

they are excluded from further discussion (pp. 273-274). 

2.2.5.1. Considerations Regarding Cattell’s Scree Plot 

 Cattell’s method is open to subjective interpretation on part of the user, something 

we stated we wish to minimize in our candidate stopping rule.  In Figure 2.3. we have the 

case of multiple choices of breaks in the scree lines and in Figure 2.4. we have exactly 

the opposite--no apparent break in slope at all.  However, it is more likely in practice that 

the situation encountered in Figure 2.3 will be found than of that in Figure 2.4.  There is 

not much ground to be gained by automating the scree plot; however, it will not be ruled  
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out as a candidate at this time. 

2.3. Objective Evaluations of Stopping Rules Accuracies 

 The next part of the literature review is a survey of three different journal articles, 

each performing comparative tests of the stopping rules we have examined.  Each article 

tested many different stopping rules; however, our scope is limited to discussion of the 

findings summarized in Table 2.1 for the three graphical techniques of interest to us.   

2.3.1. Summary of Test Findings--Zwick and Velicer 

 In broad discussion, Zwick and Velicer determined that PA was overall the most 

accurate method they tested; however, depending on the composition of the test data, PA 

could perform slightly different with different sample sizes (1986:434).   

 They did not recommend K1 for PCA as it consistently overestimated the number 

of major components.  Velicer, in an earlier work, makes the statement that Kaiser’s 

greater than unity rule and the scree test both have been criticized as either too subjective 

or too arbitrary (Velicer, 1976:322).  The criticism of K1 a decade later is stronger: “The 

use of the K1 rule as the default value [in popular statistics software] is an explicit 

endorsement, particularly to naïve users…seems to guarantee that a large number of 

incorrect findings will continue to be reported.” (Zwick & Velicer, 1986:439).  Despite 

positive aspects of the scree test, they did not recommend it, as the subjectivity in using it 

invites concerns regarding the practitioner’s reliability.  However, the scree may be 

useful as an initial estimate or as a method complementary to PA.  The major drawback 

of using PA is the need to generate large sets of correlation matrices at the particular 

combination of n x p (Zwick & Velicer, 1986:441). 
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 Their chosen test method generated five sample correlation matrices from 48 

known population correlation matrices (at each of two sample sizes).  There were six 

levels of component pattern complexity in the 48 correlation matrices.  The approach was 

similar to the "middle model" of work published by Tucker et al. in 1969 (Zwick & 

Velicer, 1986:435). 

2.3.2. Summary of Test Findings--Jackson 

 Jackson did not include PA in his analyses; however, under discussion of the 

scree plot he recognizes Horn’s 1965 paper and restates its methods but does not use it in 

forming a solution (he uses Cattell’s 1966 procedure as outlined).  Jackson found that  K1 

tended to overestimate the number of dimensions to retain and the scree plot tended to 

consistently retain one too many components (1993:2211).  Jackson’s test data consisted 

of simulated data matrices of uniform correlation structure, patterned matrices of varying 

correlation structure, and three ecological-based datasets of lake water samples. 

2.3.3. Summary of Test Findings--Peres-Neto et al. 

 The most recent comparative study surveyed was published by Peres-Neto, 

Jackson, and Somers (2005).  In total, they compared 20 PCA methods, two of which are 

of interest to this thesis (K1 and PA; the scree plot was not part of the test group).  Their 

results suggest that irrespective of matrix size and type of distribution, PA was one of the 

most accurate rules overall and called it "...[one of] the most promising rules for 

component evaluation" (p. 994).  K1 performed poorly and was removed from  

further inspection due to poor performance. 

 Their chosen test methodology included Monte Carlo protocol produced 



 

25 

 correlation matrices in 9 or 18 variables with known non-trivial components.  Trivial 

components were degenerate and carried only noise.  In total, fourteen different designs 

of correlation matrices were used. 

2.4. Impact of Keeping The Wrong Number of Components: Part II 

 In Chapter I we made an observation from the loadings matrix example (Table 

1.1) that a need exists to balance summary with clarity.  Which is the greater PCA 

misstep:  Retention of excessive trivial principal components (too many components) or 

including only those that are unambiguously relevant to the analysis (too few 

components)? 

 Cattell is of the opinion (1966:246, 275) that allowing some amount of variance 

(error) into the analysis is acceptable and is even encouraged; this is accomplished by 

permitting an extra component into the analysis.  If the aim of the PCA is exploratory in 

nature, this approach may be well-suited.  Note that Cattell frames his discussion from a 

factor analysis perspective.  Interested readers are encouraged to reference his 1966 paper  

The Scree Test for The Number of Factors paying particular attention to pages 245-247.    

 Zwick and Velicer give three factor desirability guidelines to consider when 

determining an experimental goal (1986:432-433).  They recommend (1) a component 

have three significant (non-zero) loadings to be useful; (2) summarizing power greater 

than 1.0; and (3) non-negative reliability (a reference to a test design statistic).  Zwick 

and Velicer categorize the interest components have to a researcher as:  

- Major components have three or more substantial loadings and are probably 

of interest; 
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- Minor components have less than three substantial loadings but an eigen- 

  value greater than 1.0 or an eigenvalue less than 1.0 but with three or more 

substantial loadings are probably of interest; 

- Trivial components have an eigenvalue less than 1.0 and less than three 

  substantial loadings should not be retained. 

Peres-Neto et al. investigated the matter and found that over extraction might not 

be as serious a problem as under extraction (2005:994), the reason being earlier 

components (those with larger eigenvalues) have higher amounts of variance.  Thus, if 

too many components are kept, one is likely to be retaining a small amount excess 

variance instead of cutting out a large amount of useful information by under extracting. 

2.5. Summary of Component Extraction Stopping Rules 

 We now have the information necessary to select a stopping rule candidate.  

Based upon the observations and findings of the literature review, this author's collective 

thoughts of what he has read and of what others have published and a summary of the 

component extraction stopping rules accuracy tests, the following criteria will be used to 

select a component extraction stopping methodology: 

 - Be a visual analysis method;  

 - Reduce unnecessary subjectivity on behalf of the analyst; and 

 - Produce accurate dimensionality estimates. 

Table 2.1 is a chart of the benefits and limitations of the stopping rules, how they 

compared to each other in independent testing, and an overall assessment.  From it we 

can make a conclusion regarding which candidate to select for development. 
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Table 2.1.  Composite score decision matrix for stopping rule selection. 

   Test Method Candidates 

  Kaiser’s Criterion 

(K1) 

Horn’s Method 

(Parallel Analysis) 

Cattell’s Scree 

Plot 

L
it

er
at

u
re

 

R
ev

ie
w

 

F
in

d
in

g
s Pro 

Easiest to apply, 

very popular 

Accounts for error 

in the sample 

Flexible; analyst 

can  make choices 

Con 
Inflexible due to the 

go/no-go results 

Requires large 

amount of random 

data for each n x p 

Possibly misleading 

if scree line has 

complex slope  

C
o
m

p
ar

at
iv

e 
T

es
ts

 

F
in

d
in

g
s 

Zwick & 

Velicer 

(1986) 

Not recommended 

for PCA 

Recommended; 

regarded as most 

accurate 

Recommended; 

esp. for experienced 

investigators 

Jackson 

(1993) 

Overestimates non-

trivial dimensions 
(Not evaluated) 

Overestimated 

interpretable 

components 

Peres-

Neto et 

al.  

(2005) 

Removed from 

further testing due 

to poor 

performance 

One of the most 

accurate overall 
(Not evaluated) 

Assessment 
Nothing to gain by 

automating 

Software can 

provide demand for 

data ‘overhead’  

Would require 

practitioner 

training, experience 

Conclusion Not selected Selected Not selected 

 

Of the stopping rules surveyed, Horn’s method offers the advantages of accurate 

estimation, is not prone to subjective analysis, and has familiar key features of the other 

methods (e.g., the scree line and reference to λ = 1.0).  Having this quality (i.e., familiar 

features) was not part of the original research objective, but knowing now that K1 – 

despite its misgivings – is a popular rule, incorporating the λ = 1.0 element can provide 

an additional benchmark without compromising the automation goal.   

 In order to make effective use of time processing random data for Horn’s test, we 

need to first determine what sizes of data are found in published works.  The size and 

number of problems the algorithm can answer will be limited.  Preliminary surveys (the 
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technical challenge will be left for discussion in Chapter III) provide insight on just how 

large a dataset a ‘typical dataset’ might be.   

2.6. Expected n x p of Research 

 While more data is usually a good thing, at some point too much becomes 

overwhelming.  It is not a research objective to provide Horn’s curve for every possible 

experiment because there are infinite combinations of n x p.  Instead, the effort is to work 

smarter, not harder, and frame the n x p solution in terms of a region-of-interest (ROI); a 

two-dimensional area defining practical and relevant bounds of both n and p. 

 During the literature review, each article and web search using a dataset of stated 

n observations and p variables was recorded.  (Note: Not all literature revealed their  

sample sizes and member variables; some articles stated only summary findings.)  To 

adequately define the ROI, actual data was not of import, only the n x p dimensions.  The 

goal is to gain understanding of what data sizes are expected in the research community.  

Of particular benefit was the Machine Learning Repository (University of California-

Irvine, 2007).  The UCI website is replete with donated multivariate data and organizes 

its database by field of research, data sizes, year the research was conducted, and purpose 

(classification, regression, etc.).  To narrow the problem scope, multivariate listings that 

had at least one publication citation were logged.  Using this criterion, 156 such datasets 

were recorded.  Within the published literature, 22 instances of listed data sizes were 

found.  Altogether, this represents 178 ‘samples’ of empirical research; Figure 2.5 shows 

how they are clustered. 
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Figure 2.5.  Data sizes of the surveyed, published studies.  Axes scales are in hundreds of 

thousands. 

The area in Figure 2.5 is too broad a range of n x p to work in; the amount of 

sparsity present suggests that mega-sized datasets are not the norm.  Note that the green 

points, representing the computer science field, are very large in one or both dimensions 

and represent most of the outliers.  These datasets contain information such as web page 

visits, online user surveys, and optical recognition of character symbols.  It is not 

unexpected that automated data collection routines and the sheer volume of Internet 

activity results in such large datasets.   

To reduce the outlier clutter, filtering is done on studies that number fewer than 

10,000 observations.  One hundred and forty three studies are in this range (Figure 2.6).  

A reasonable portion from which to form the ROI appears in the red bordered area; this 

area encompasses studies having 1 to 1,000 variables p and 1 to 7,000 observations n.  

Defining the ROI in this manner captures 80.3% of the original 178 n x p ‘samples.’ 
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Figure 2.6.  ROI bordered in red.  Note clustered studies near the origin. 

 

 

 

Figure 2.7.  Magnified view of studies clustered near the origin.  Three points are 

underdetermined (below the diagonal). Red ROI border is omitted for clarity. 
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 In Figure 2.7 a magnified view of the lower part of the ROI is presented; here we 

can see the individual elements (studies) and how the pattern appears to be most 

published multivariate work contains fewer than ~150 variables and 500 or so instances.  

The number of studies in this group is 111 (62.4%). 

 

Figure 2.8.  Close-up view of  the origin.  Three points are underdetermined (below the 

diagonal). Red ROI border is omitted for clarity 

The final snapshot of the ROI is taken by scaling the sample size down to n ≤ 500.  

Here we have a satisfactory view of the grouping near the origin at (0, 0).  As shown in 

Figure 2.8, the number of studies within this range are 75 (42.1% of the 178).  At this 

resolution there is enough detail to see that studies having underdetermined data are rare, 

accounting for only 3 of 75 (0.4%) of the works noted.  The matter of underdetermined 

data (more variables than observations in a study) will be revisited in detail during 

Chapter III, Section 3.7.  For now, it is sufficient to say underdetermined data presents 

technical challenges and all such datasets will be excluded from analysis. 
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2.7. Chapter Summary 

In this chapter the literature was reviewed for visual analysis component 

extraction stopping rules.  Three candidates were found: 

- Kaiser’s criterion (K1);  

- Cattell’s scree plot; and 

- Horn’s test. 

Each test has its own drawback design limitation.  In particular, Horn’s test requires a 

large amount of random data evaluation before it can provide a dimensionality estimate 

for a sampled data set.  Graphically, Horn’s procedure appears to incorporate features of 

both the scree plot and K1. 

 To gauge how well each candidate performs in determining the number of  

principal components, three published articles on comparative evaluation of stopping 

rules were reviewed.  These papers put each stopping rule under test using carefully 

constructed simulation data of which the dimensionality was predetermined.  Horn’s test 

received high marks for being one of the most accurate methods tested.  K1 tended to 

overestimate the number of principal components (that is, ‘noisy’ components with little 

substantive value were included in the dimensionality determination).  The scree plot was 

accurate in its dimensionality estimates as long as the practitioner was experienced with 

the technique.  The summary observations, findings, and candidate selections are listed in 

Table 2.1. 

We approached the question of how many factors to retain once more (first 

presented in Chapter I), this time reviewing what other authors had found.  Most stated it 
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is better to include too many components rather than too few, as leaving components out 

may discard useful information (i.e., variance) in the eigenvalues.   

At the end of the stopping rules survey, it was apparent that Horn’s test is the 

smart choice for algorithm development and has been selected as our candidate.  The data 

requirements needed to run the routine had to be addressed, so a survey of the published 

literature (both printed and found in the UCI Internet database) was conducted to 

determine what sizes of n x p are likely to be found in experimental studies.  The ROI 

was identified and the data processing budget was centered on an area encompassing 

roughly 1 to 1,000 variables p and 1 to 7,000 observations n.  We want the algorithm to 

be of  practical utility to multivariate practitioners and mapping of the ROI will build-in 

value.
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III. Methodology 

 

3.1. Chapter Overview 

This chapter discusses the methodology used for completion of this thesis.  

Starting with Horn’s ideas in A Rationale and Test for The Number of Factors in Factor 

Analysis (1965), we develop the ideas and thought processes and move toward a 

functioning MATLAB algorithm.   

We start the journey with the thought we have some sense of direction but are not 

completely sure what we will find.  Horn gave us all the parts of how and why the 

procedure works.  The exact process – the writing of the algorithm – does not contain any 

surprises but it does require some careful thought about how to set the stage.  These next 

few paragraphs will discuss the integration of the parts to a whole and why decisions 

have the outcomes that they do.  Since we are exploring, taking time to visually see what 

is happening in the data is often more revealing than staring at a column of numbers – 

visual evidence is often quite compelling.  The theory and rationale as a whole are first 

introduced and as we progress, supporting concepts are visited: 

- Monte Carlo simulation (MCS); 

- Scree lines characteristics; 

- Refinement of the region-of-interest (ROI); 

- Lookup table characteristics; 

- Linear interpolation and nearest neighbors (NN) search; 

- Linear regression second-order model; and 

- Sampled data algorithm. 
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At chapter end preliminary results will be demonstrated as well as side-by-side 

comparisons of the two solution approaches (a mean eigenvalue routine and a linear 

regression second-order model).   

3.1.1. Mean Eigenvalue (MEV) Solution 

 The first solution strategy is a pre-processed table of data capable of producing an 

on-the-fly estimation of Horn’s curve.  In Section 2.6 we observed that not every possible 

n x p combination is of interest to us.  Therefore, an interpolating function is needed to 

find intermediate n x p solutions that fall within the ROI but for which we do not have 

specific information for.  MEV is the most direct route to a solution but it is the most 

burdened with the data overhead it requires. The MEV solution will be developed first. 

3.1.2. Linear Regression Second-Order Model (2OM) Solution 

 The second approach is to build a 2OM model on the framework of the MEV 

solution.  Depending on the model coefficients, a second-order polynomial can produce a 

curve ranging from a parabola to a nearly straight line (we assume the quadratic 

coefficient is not zero; otherwise, we would choose a first-order model).  We maintain the  

MEV constraints on n x p data selection plus the requirement that Horn’s curve be ‘well-

behaved’ (i.e., it has predictable properties for all points within the ROI).  The response 

function that captures this requirement is strictly monotonically decreasing.  

3.2. Motivation  

As was shown in the literature review, Horn’s technique is generally regarded as  

producing an accurate assessment of component dimensionality.  Its drawback is the need 

to generate large amounts of random, normally distributed data.  In the decades since 



 

36 

Horn first described the technique, advances in computer resources have made it possible 

to automate a fast running algorithm and computer memory and hard drive storage is 

abundant.  The impact of a large data footprint can be minimized. 

3.3. Theory of Horn’s Test 

 We begin by letting n = sample size, p = number of variables, and k = a large 

number of Monte Carlo simulation (MCS) iterations.  The random variable distribution is 

configured standard normal (population parameters  mean μ = 0 and variance σ
2
 = 1) 

within the MCS.  If Ip is the p x p identity matrix, the individual elements xij of random 

data matrix X are  

  
{1,2,..., 1, }

~ 0,   where 
{1,2,..., 1, }

ij P

i n n
x NID

j p p

 


 
I  (3.1) 

Upon each increment of k, a new data matrix X of random variables is produced.  It 

should be emphasized that each element in X is created i.i.d. during each iteration.  There 

 is no recycling of data between iterations.   

3.3.1. Correlation of The Random Data 

The correlation operator on 
n pX  is consistent with Horn's methodology 

(1965:179-182) and by evaluating correlation results scaling difficulties and nonsensical 

units of measure are eliminated.  The eigenvalues i are extracted from the resultant 

correlation matrix 
p pR  by determining the linear combination 

1

0
p

i i

i

a C


  of the 

variables 1 2 1, ,..., ,p pC C C C  having maximum sample variance, rank-ordered from largest 

to smallest (by index i: i = 1, 2, …, p-1, p),  and then averaged by index.  In notation, the 
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 steps are: 

 Correlation operations on n p p p  X X R   (3.2) 

 1 2 1Eigenvalue extraction and sorting p p p p         R  (3.3) 

 
1

Sum within each sorted index 
k

i

j

i


  (3.4) 

and finally the average eigenvalues are sorted and summed by index  

 
1 2 1

1 1 1 1

1
, , , ,

k k k k

p p

j j j j

MEV
k

   

   

 
   

 
   λ  (3.5) 

and stored in vector format for further use.  The symbol i ("lambda bar sub i") denotes 

the MEV for component i where i ∈{1,2,...,p-1, p}.  Vector λ , Equation (3.5), contains 

all the ordinate information for completing Horn’s curve. 

 By rank-ordering the eigenvalues from highest to lowest, summing within each 

rank (index), and then averaging the indexes, a picture of how much total, or common, 

variance each eigenvector represents emerges.  A natural next step is to use the 

mathematical properties of the components to study the behavior of the original variables 

expressed in new combinations of each other. 

  In contrast to sampling theory not all eigenvalues are equal in the real-world but 

they all sum to the number of variables in 
p pR .  

 1 2 3 1

1

...
p

i p p

i

p     



        (3.6) 

This is an interesting property regarding eigenvalues of the correlation matrix – a total of 

p eigenvalues, equal to the number of columns (each column representing one variable) 
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in R – collectively sum to p.  In PCA, we take advantage of this relationship in two ways.  

One, it is straightforward to determine the fraction of total variance the i
th

 component 

explains from the equation 

 ,  : ,  (0 )i i p i p
p


    (3.7) 

By extension, we reach advantage two: A target variance T can be chosen by the 

practitioner and approximated by selecting a full or partial sum of j eigenvalues  

 
1

 : , ,  (0 )1

0 1                         

j

i

i

j p i j p
T

Tp




  
 

 
  (3.8) 

Note that while T may be any value, the number of eigenvalues is discrete so an exact 

summation to T is not likely; T is more properly used as a threshold.  The art of target 

variance application should be done before the dimensionality assessment.  How much 

variance the researcher wishes to summarize should be kept in sight of determining how  

many principal components to retain as the two are directly linked. 

3.3.2. Covariance Instead of Correlation 

 PCA can be performed using the covariance operator; however, the sample 

variables should be similar sized and of consistent measurement categories.  As was 

previously stated, choosing to work with the correlation matrix eliminates unusual units 

of measure that may not be apparent without dimensional analysis of the variables.  

Hence, the algorithm born in this thesis is applicable only to summary statistics from 

correlation operations.  Readers proficient in MATLAB coding and who require the use 

of variance-covariance operations are encouraged to make the necessary modifications to 

the algorithm (located in Appendix II). 
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3.4. Monte Carlo Simulation 

In his paper, Horn mentions "...sets of very large samples of size...drawn 

independently from a normally distributed population of random numbers..." and 

"...Insofar as [the iterations] are reasonably large, these averages give Ra [Figure 3.4; the 

curve of random data for large observations]." (1965:179; 182).  An appropriate routine 

to the large random samples requirement is Monte Carlo simulation (MCS), the technique 

of using repeated sampling to determine properties or behavior of some phenomenon.  

Formally, Sawilowsky (2003:219), refers to MCS as “... an explicit reference to the use 

of repetition as a method of discovery of the long run outcome of an event.”   

Given that the parameter of interest θ is the magnitude of each rank-ordered 

component (the mean eigenvalues  where 1,2,...,i i p  ), we let X be a discrete random  

vector and the parameter of interest the some specified function h is  

 
1

[ ( )] ( ) { }j j

j

E h h x P x




  X X  (3.9) 

When ( )jh x is difficult to evaluate, the use of random numbers can be used to generate a 

partial sequence of i.i.d. random vectors X1, X2,…,Xn having the mass function P{X = 

xj},  j  ≥ 1 (Ross, 2007:247-248).  The strong law of large numbers yields 

 
1

( )
lim

k
i

k
i

h

k






X

 (3.10) 

Therefore, for large k the average approximates .  The strong law of large numbers 

guarantees the approximation to the parameter as k, the number of iterations, becomes 

large.  Further details regarding choosing k are discussed in Sections 3.4.2 and 3.12.2. 
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3.4.1. Random Number Generator 

MATLAB contains varied (pseudo)random number generator functions (PRNG) 

and user-adjustable parameters.  MATLAB version 7.12.0.0635 (release R2011a) was 

used for all scripting.  Prior to Version 7.7, the seeding of the random number generator 

was somewhat confusing and at risk of being misapplied (The MathWorks, 2012).  

Because of this, the rng function was introduced.  By setting rng(z), where z is non-

negative integer, the programmer controls the stream used by the random number 

generator functions – these functions include the normrnd call shown in Figure 3.3.   

In all instances, the PRNG is set arbitrarily to stream zero when the Horn’s test 

 algorithm begins by the scripted line rng(0), returning the PRNG to its default setting 

of using the Mersenne twister algorithm; its period is 2
19937

-1) (Matsumoto, 2011).  

Resetting the PRNG allows control over duplication of results should similar batches of 

data be required.  Once the script points to rng(0) it is not called again until after 

execution halts and before a new round of MCS begins – it is never reset when the 

system state is busy.   

Readers wishing to adapt this routine to their use should determine what version 

of MATLAB they are using.  If rng causes execution halts (errors), legacy random 

number generator functions will be required (such as rand and randn).  Another 

consideration:  Code that ‘flip-flops’ between current and legacy random number syntax  

should reset the random number state using the command rng default.  For more 

information, see the MATLAB User Guide, specifically the documents Updating Your 

Random Number Generator Syntax and Controlling Random Number Generation. 
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3.4.2. The Importance of Selecting Sufficient Monte Carlo Iterations 

 There are two reasons a sufficiently large value of k is not only desired, but 

critical to successful algorithm implementation.  The first is there has to be enough 

opportunity for the means of the eigenvalues    to approximate the steady state at θi.  

Steady state is a somewhat of a misnomer because Horn’s procedure does not require 

time series data nor does it experience a warm-up transient period in the simulation.  

Larger values of k move to convergence at the true mean of each eigenvalue, yielding 

increased precision at the cost of longer processing time.  Smaller k requires less 

computation effort and, considering the amount of random data that must be found, is 

desirable but not so at the expense of inaccurate results for  .  A balance of timeliness 

and accuracy is required. 

 Exploratory runs with varying levels of k show an exploitable trend.   Figure 3.1 

illustrates the convergence of the MEVs as k is increased.  Panel A shows k from 10 to 

10,000.  Note k = 10 (magenta line) does not band tightly with the others; it is a poorer 

fit.  Visually, it appears k = 100 is a good balance between convergence and computation 

effort.  Panel B shows the chosen k  = 100 compared to k = 10,000; the fit is satisfactory.  

Because of these reasons (fit vs. effort), k = 100 is used in the algorithm found in Figure 

3.3 for the remaining thesis work.  
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Figure 3.1.  Different values for the number of Monte Carlo simulation iterations on a 

common size of random data.  

3.5. Flowchart of Horn’s Algorithm for Random Data 

It may be of value to view the algorithm from a function perspective; that is, once 

the input parameters n, p, and k are defined, everything is self-contained to generate in-

turn an output for the next step of the solution.  The flowchart and pseudo code shown in 

Figure 3.2 were easily scripted into a MATLAB .m file.  The script shown in Figure 3.3 

was written as a function because of its specialized purpose.  Figure 3.3 is an executable 

MATLAB .m file – the inputs are values for p, n, and k – for Equations (3.1) - (3.5).  The 

resultant vector  EigenMean is applied in developing plots, graphs, the lookup table 

values, second-order model coefficients.  It encapsulates the information needed to 

produce an estimation of Horn’s curve. 
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Figure 3.2.  Flowchart diagram of  the MATLAB algorithm for Horn’s test on random 

data.  The red dashed border indicates modular functionality. 

 



 

44 

Figure 3.3.  Horn’s test algorithm for random data in MATLAB script. 

3.6. Characteristics of Scree Lines 

 Now that we have a working algorithm, we are motivated to pause and perform a 

progress check.  Horn provided a figure in his paper (1965:184) to illustrate parallel 

analysis in action.  It is reproduced here in Figure 3.4 with some embellishments to 

highlight the key features.  Curve A (blue circle) is the scree line from actual data, curve 

Ra (red circle) is from the idealized random data, and the intersection of the curves (green 

rectangle) indicates estimated component dimensionality.  Because we do not have the 

original data set, only the n x p size, it is not possible to reproduce curve A.  However, it  

 %******Horn's Procedure using RANDOM DATA in simple MATLAB script.*********   
%******Does not contain plotting or error checking routines.*************** 

% 

%Variables: 

%p = # of variables; set through interactive input or hard coded 

%n = # of observations; set through interactive input or hard coded 

%k = # of Monte Carlo simulation iterations 

%X = matrix of random variables ~NID(0,1) 

%V = eigenvectors returned from 'eig' call.  Used for component loading 

%    and confirmatory testing.  Not needed for Horn's curve 

%D = eigenvalues of R returned from 'eig' call.  Essential! 

%->Note 1: Sampled data is not averaged; it is what it is 

%->Note 2: X must lead to invertible R for 'eig' to complete 

%          Therefore, X might need to be manually conditioned 

%          for multicollinearity, NaN, linear dependence, etc 

%initialize variables/starting conditions 

EigenMean = diag(zeros(p))';        %preallocate array of mean eigenvalues 
rng(0);      %seed the random number generator 
%loop runs Monte Carlo sim (random data draws) on the chosen size data 

for i = 1:k 
    X = normrnd(0,1,n,p);           %random data matrix X size n x p 

      %elements of X are iid ~N(0,1)  
    R = corr(X);                    %Correlation matrix of X  
    [V,D] = eig(R);                 %(V) eigenvectors, (D) eigenvalues  
    D = sort(diag(D),'descend')';   %sort 'eig' result from large to small 
    EigenMean = EigenMean + D;      %Add each eigenvalue by array index 
end 

%**********************************Result********************************* 

%'EigenMean' is the vector of eigenvalue means over all k iterations.   

EigenMean = (EigenMean.*(1/k)); 

%*************************************************************************      

% 

%end of program.                                                     
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Figure 3.4.  Horn’s original figure of the theory put into application.   

 

Figure 3.5.  Reproduction of Horn’s illustration, this time with varying observations n.  

Notice the convergence of rotation in the slope towards unity. 

is possible to produce curve Ra simply by knowing the data size.  We do this in the upper 

left subplot of Figure 3.5.  To help visualize the concept that as n approaches infinity the 

slope of the ideal curve goes to zero at unity, we can fix p at a particular value and 
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observe what happens as we increase n.   We can see here that the differences between 

the components becomes less and less as observations increase; this is due to an 

equalizing of total variance among the components.  The dominant components ‘lose’ a 

percentage of variance, the smaller ones ‘gain’ variance.  In theory, if the sample size 

were taken to infinity, they will all account for an equal portion of the total variance. 

 

Figure 3.6.  Fixed p=5 and varying n through 220 increments from 5 to 7,000. 

 To further our understanding Figure 3.6 is introduced, illustrating the progression 

of the slope towards zero as the variable is held fixed.  This time, we observe a small 

number of variables (p = 5) and observe the rotation behavior in both speed of 

convergence (large jumps between ordinate axis values – the mean eigenvalues – indicate 

rapid movement; no gap shows very little change in slope).  Notice that the density of 

curves is closest to the 1.0 reference line.  The ratio of n to p varies from 1:1 at the start 

of the sequence to 1400:1 when the 7,000 maximum observations are reached.  

 If we repeat the process, this time for using Horn’s example of p = 65, we see 
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Figure 3.7.  Fixed p=65 and varying n through 208 increments from 65 to 7,000. 

 

Figure 3.8.  Fixed p=500 and varying n through 121 increments from 500 to 7,000. 

similar results (Figure 3.7) without large jumps towards zero slope and the convergence 

towards unity is not as tight.  The starting n:p ratio is 1:1; at completion it is 108:1.   

The final graphic (Figure 3.8) in this group is p = 500 variables plotted against the 

same maximum number of rotations.  We observe no unexpected trends. 
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The jump size is no longer discernible and the rotations are exhausted further away from 

the reference line. The starting n:p ratio is 1:1 and at completion is just 14:1. 

3.7. Rationale for Excluding Underdetermined Data 

 When there are more variables (columns) than observations (rows) in a matrix  

full rank is not possible.  If p > n at least one of the eigenvalues is zero and the 

determinant of R = 0.  This case is called underdetermined.  Figure 3.9 is a comparison of 

curves for underdetermined (p > n), overdetermined (or adequate; p < n), and minimum 

(n = p) fitted data.   

   

Figure 3.9.  Comparison of underdetermined, adequate, and minimum fit random curves.  

In this example, Components 13-20 have trivial mean eigenvalues (red ellipse) when 

n=12. 

In Figure 3.9 we see an example of each type of these curves.  Notice that the last eight 

MEVs equal zero for the underdetermined data (orange curve, lower right corner).  This 

is not a random event; the initial conditions for the underdetermined data are p = 20 and      

n  = 12.   
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There are three reasons to be concerned with inclusion of underdetermined data into the 

lookup table.  

(1) We desire useful components for dimensionality reduction.  If we have 

 multiple zero-valued components, information has already been lost 

 before  starting PCA.    

(2) MEVs do not meet our criterion that the curve be strictly monotonically 

 decreasing 1 2 1... p p        in the interval 
1 2 1, ,..., ,p pC C C C

  

 because we find  0 :iC i i p n     .  In the sample of curves shown     

      in Figure 3.9, components 13 14 19 20... 0C C C C      and therefore the     

      requirement is violated.   

(3) To capitalize on what is useful in terms of relevant multivariate research, 

 only data of practical value will be pre-processed into the lookup table.  

 We observed in Section 2.6 that p > n sized datasets are uncommon in 

 the published datasets.   

Therefore, because of these reasons, p > n sizes are excluded from the analysis. 

3.8. Flowchart of Horn’s Test for Sampled Data 

 The algorithm for sampled data is well-represented in a flowchart format.  In 

sampled data, n x p are defined by X and random data draws of k are not required.  

Provided X is adequately conditioned for correlation and R is invertible, this algorithm 

will find the eigenvalues.  Error checking the input X is not shown here; it takes place 

inside the main program directing input/output and all interactions with the user.  The red 

dashed border signifies the code is modular in design and can be written as a function or 
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placed inside the main program.  Note that while the code is complete and standalone, the 

intent is for it to work in concert with pre-processed random data (refer to the flowchart 

for random data in Figure 3.2 and the MATLAB script in Figure 3.3).  The two 

algorithms – random data and sampled data – are called consecutively and they have an 

equal role in producing a comprehensive solution.  While each is algebraically 

independent, the interweaving of the two is required for a full assessment of how many 

components to extract for PCA of the problem presented. 

 

Figure 3.10.  Flowchart diagram of MATLAB script for Horn’s test on sampled data.   

The red dashed border indicates modular functionality. 
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Figure 3.11.  Horn’s test algorithm in MATLAB script for sampled data. 

The reader should note that Figure 3.11 contains code applicable to sample data only.  

Unlike the flowchart of Figure 3.2 and code in Figure 3.3, there is no looping through 

MCS draws and averaging the eigenvalues by index.  Real-world data will likely need to 

be conditioned – MATLAB can store and manipulate missing or  

incomplete matrix entries but such data (NaN and Inf)  is indigestible to the correlation 

operator and toxic to the eig function.  This code is compact enough to remain in the 

main script – there is no dedicated function for it. 

3.9. Interpolation Lookup Table 

In Section 2.6 we examined the need for a suitable region-of-interest (ROI) from 

which to define the sizes of data we wish to evaluate.  We did this to meet practical 

limitations but also to observe the stated objective of parsimonious implementation.  The 

 

%******Horn's Procedure for SAMPLED DATA in simple MATLAB script.**********   

%******Does not contain plotting or error checking routines.*************** 

% 

%initialize variables/starting conditions 

%X = matrix of study data; observations in rows, variables in columns 

%    Must be preloaded in memory or from command "load(filename, '-.mat)" 

%    If you use other data storage variables, replace the 'X' in  

%    "R = corr(X)" with your data variable 

%V = eigenvectors returned from 'eig' call.  Used for component loading 

%    and confirmatory testing.  Not needed for Horn's curve. 

%D = eigenvalues of R returned from 'eig' call.  Essential! 

%->Note 1: Sampled data is not averaged; it is what it is 

%->Note 2: X--the data matrix--must lead to invertible R for 'eig' to  

%          complete.  Therefore, X might need to be manually conditioned 

%          for multicollinearity, NaN, linear dependence, etc. 

R = corr(X);                     %Correlation matrix of sampled X  
[V,D] = eig(R);                  %(V) eigenvectors, (D) eigenvalues 

%**********************************Result********************************* 

'sev' is the vector of sample data eigenvalues for all components 

sev = sort(diag(D),'descend')';  %sort result D large to small 
%*************************************************************************      

% 

%end of program.                                                     
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most direct approach to a solution is to perform Horn’s procedure for every point in the 

ROI; however, not only is the n x p space large, MCS of many successive iterations may 

take hours to complete for just one point (p, n).  We are now motivated to ask "How 

much of the ROI data do we need to pre-process?  Is there a  way to achieve satisfactory 

results without preprocessing the MEVs for every inclusive point (p, n) in the ROI?"   

In turns out that with careful selection of the distance of intervals between 

adjacent coordinates (p, n) we can compute (or map) a fraction of the points into a 

database lookup table and then use the method of linear interpolation to instantaneously 

estimate the unknown points on an as-needed basis (say from a user-supplied input).  

Constructing a meshed ROI lightens the data density without negatively impacting the 

accuracy of the solution.  (We will see that the lookup table for a gridded ROI is still 

bulky and took longer than eight days of dedicated processing time to complete.) 

The lookup table has several elements that must come together:  Lookup  

table dimensions, granularity of the mapped (p, n) space, searching of nearest neighbors 

and creation of surrogate curves, and piecewise linear interpolation of the solution from 

nearest neighbors.  Each of these concepts is explored in detail in the following sections. 

3.9.1. Dimensions of Data Matching and Search Configurations 

 Data matching refers to locating (p′, n′) in the lookup table; both, one, or neither 

value may be already mapped (i.e., found in a header column for a row of pre-processed 

MEVs).  How the algorithm handles the search is not complex, but it is exhaustive in that 

the correct subset of data from the lookup table needs to be isolated prior to interpolation. 

 The matter of mapping each (p, n) in the ROI is self-defeating because we end up 
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 with an oversized database at the expense of considerable upfront CPU time – an 

impractical solution.  What is needed is a database of manageable size coupled with a fast 

search algorithm providing accurate data to the interpolating function that in return, gives 

a reliable estimation of Horn’s curve. 

 To orient understanding of how the lookup table search routine categorizes a user-

selected point of interest (p′, n′), there are five cases that are possible for a given (p′, n′) 

input.  As shown in Table 3.1 they are:  

 (1) neither p′ nor n′ are in the table;  

 (2)  p′ is in the table, n′ is not;   

 (3) p′ is not in the table, n′ is;  

 (4) p′ and n′ are both in the table; and 

 (5) Either one is or both (p′, n) are out of range of the table. 

Table 3.1.  Point-of-interest (p′, n′) input cases and search method sections.  

p' n' 

Case 

Number Section(s) 

No direct match No direct match 1 3.10.2, 3.10.3 

Direct match  No direct match 2 3.10.1, 3.10.2, 3.10.3 

No direct match Direct match 3 3.10.1, 3.10.2, 3.10.3 

Direct match Direct match 4 3.10.1, 3.10.2, 3.10.3 

Either or both out of mapped data bounds 5 N/A – Invalid 

 

3.9.2. Lookup Table Granularity 

 In Section 3.6 some examples of what happens to the slope of Horn’s curve as the 

number of observations n increases for a fixed variable p were demonstrated.  To 

differentiate the progressive decrease in slope as n  increases, a color scheme shifting 

from deep blue to dark red as was chosen.  Dark red indicates a Horn’s curve with slope 
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close to zero (that is, they lie close to the horizontal at λ = 1.0).  Deep blue signifies the 

number of observations n is approximately equal to the number of variables p.   

 The takeaway from Figures 3.6 - 3.8 is after some sufficiently large value of n the 

change in slope at (p, n) does not differ significantly from that of (p, n+1).  Perhaps 

taking n at some larger interval (n+10, for example) will save processing time, decrease 

storage density, all with no loss of accurately estimating Horn's curve for (p, n). 

 At this point some exploratory runs for a suitable range of granularity are in order. 

There are two dimensions (p, n) in the data but three possible decisions because the 

interaction of p and n need to be considered.  In other words, a solution (granularity 

interval) that works well in one dimension may not work well in the other and the power 

of the (p, n)  interaction to provide accurate Horn’s curve estimation for (p′, n′) should be 

significantly high enough that misleading or inconclusive results are not presented.  

Fortunately, it turns out that thoughtful selection of granularity in the two dimensions 

negates concern regarding the combined interaction. 

 The behavior of Horn’s curve as it rotates on λ = 1.0 about p/2 has already been  

discussed, so we should expect to see it again in the exploratory runs (and we do).  What 

is new is how many observations each variable requires to force the slope of Horn’s 

curve to near zero; apparently, there is a ratio of n/p that will give us some idea of ‘how 

much n’ for ‘how much p’ we need if we have a target slope in mind.  Recall that the 

sampling theory behind Horn’s procedure is infinite size of n and k  is needed to reach 

zero slope; that is, all eigenvalues are 1.0 in the population (n being the dominant  

parameter).  That statement is not being tested here; the goal is be ‘good enough’ in  
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practical application for the curve estimation. 

 In Figure 3.12, a total of four histograms are used to present individual views of 

three values of p (5, 250, and 500) and the collective set of all p variables.  The 

histograms chart the frequency of movement of the first MEV as increasing observations 

are put into the EigenMean algorithm and p is held stationary.  The rationale behind 

this analysis is the first eigenvalue is always the largest and it undergoes the greatest 

change in position as the curve sweeps towards the reference line at 1.0.  What the curve 

shows is, for the selected size of the lookup table, increasing values of p ‘push back’ from 

1.0.  For instance, when p = 5 (upper left subplot in Figure 3.12), approximately 150 of 

the 220 observation inputs (68%) are nearly equal to one (the large dark red bar).  When 

we look at p = 250, we see the minimum value reached is near 1.5 and when p = 500, the  

 

Figure 3.12.  Histogram of curve convergence towards 1.0 for various values of p.  Dark 

red indicates curves near  = 1.0.   
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minimum value is close to 1.6.  For all variables, the mode is near 1.8.  The visual 

analysis from this perspective is in agreement with the individual Horn’s curve 

evaluations; mean eigenvalues in the range of (1, 1.8] are reached using the maximum 

available observation size of n = 7000. 

 The other dimension (number of variables) is best served with a consistent step 

size granularity.  The number of variables sets the width of the curve; there is no 

maximum p leading to some change in characteristic of the curve slope.  We also know 

that some number of the eigenvalues will lead to a determination of principal 

components; therefore, there is more to give up in choosing too high a granularity in the 

variables than by spending time mapping the MEVs for n x p random data at finer 

intervals.  If the interval for p is too wide, we could lose clarity on the number of 

principal components because interpolation truncates the number of p components to the 

lowest nearest neighbor variable found (see p
(-)

 and nnlp in Table 3.4).  Therefore, it is 

advantageous to trade processing time for mapping accuracy when it comes to p.     

 With all things existing and planned considered – desired size of the table, 

random data pre-processing time, curve convergence to λ = 1.0 as observations increase, 

potential search configurations, and limiting width of the horizontal axis – it was 

determined to fix granularity for p at an increment of five variables.  For the 

observations, the convergence nature of the curve showed some benefit that as the 

observations increase, we can move from a finer granularity to a coarser one.  Also, we 

observed that many studies take place fairly close to the origin and along the vertical axis.  

It is beneficial, without loss of resolution, to increment as shown in Table 3.2. 
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Table 3.2.  Granularity intervals in the lookup table. 

p n Granularity 

5-1000  5-500  5 

 510-1000 10 

1050-2000 50 

2100-7000 100 

 

There is a balance to observe in storage size of the lookup table vs. processing 

power on the (p′, n′) of interest on the fly.  Earlier in this section the choice of iteration 

step size was discussed for iterations in the MCS.  A similar need exists in determining 

how the large the grid should be in the (p, n) ROI.  Recall that, based upon the published 

178 data sizes surveyed during the literature review, 138 (76%) were covered in the 1 ≤ n 

≤ 7,000 observations and 1 ≤ p ≤ 1,000 (respecting the constraint n = p).   

 

 

Figure 3.13.  Two dimensional representation of the lookup table range.  A total of 

26,650 rows and 1002 columns (78 megabytes of information) are in the database. 
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Based upon these factors, the bounded region is (5 ≤ p ≤ 1000) in increments of 

five variables and (5 ≤ n ≤ 7000) in varying intervals of observations.  The ROI is shown 

in Figure 3.13; changes in color depth correspond to changing granularities.  Note that 

there is too much saturation to distinguish between the granularities of 5 (5 ≤ n ≤ 500) 

and 10 (510 ≤ n ≤ 1000).   Please refer to Figure 2.6 for a wide angle view of the mapped 

area and the types and density of published studies that ‘reside’ there. 

3.9.3. Lookup Table Format 

Populating the lookup table (referring to it as T for convenience) with the desired 

range of data on the stated granularities was a matter of running the random data 

algorithm in those intervals.  At completion, T had grown to 26,650 rows and 1,002 

columns.  The two additional columns are incorporated into T for bookkeeping; they 

identify what (p, n) coordinate pair a row of MEVs belongs to.  In the lookup table, the 

lowest numbered rows have the highest variables – the variables p are sorted in 

descending order.  For the number of observations, the opposite is true: they are sorted in 

ascending order.  To make T column equivalent, zeros are added in the rows beyond the 

number of columns filled by MEV data.  The zeros are used as ‘filler’ because the 

number of  entries equals the number of variables (which change throughout T.) 

 A sample of this structure is given in Table 3.3.  In the rows that contain p = 5 in 

the first column (p) there are 0’s in columns
6 through 

1000 .  The pattern is similar for  p 

= 500; columns  for 
501 through 

1000 have ‘0’ entries.   

 Also visible in Table 3.3 is the descending order in the first column (p; high-to-

low) and ascending order arrangement in the second column (n; low-to-high).  This  
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schema was adopted to put the zero cells to the right side and to the bottom of the matrix.   

Therefore, T is largely sparse.  Obviously there is a need to search the rows of T for the 

 closest match to (p′, n′).  A nearest neighbors search algorithm completes this task. 

Table 3.3.  Compressed sample of entries from the lookup table T.  Columns extend to

1000 .  Diagonal dots indicate sparse columns. Header columns are p and n. 

 
3.9.4. Datasets Having Small Number of Variables (2 ≤ p ≤ 4) 

 PCA of micro datasets does occur.  For instance, Sir Ronald Fisher’s ‘Iris’ dataset 

(Frank & Asuncion, 2010) consists of four variables.  For p′ in the range of 2 ≤ p ≤ 4, the 

HornsMethodSampledMEV.m and HornsMethodSampled2OM.m algorithms 

bypass the NN searches and directly calculate the (p′, n′) eigenvalues.  Because these 

datasets have few variables, computed results using a direct application of Horn's 

algorithm are received with little delay.  Note that exploratory runs using this range of p 

are not possible with the algorithms presented because HornsMethodRandomMEV.m 

and HornsMethodRandom2OM.m each depend upon their respective lookup tables 

and p < 5 will be rejected at the input menu.  The EigenMean.m function will evaluate   

p n 1  2  3  4  5  6   995  996  997  998  999  1000  

1000 1005 3.906 3.901 3.863 3.829 3.801 3.774  1.28e-4 9.37e-5 6.56e-5 4.09e-5 2.16e-5 8.71e-6 

1000               

1000 7000 1.891 1.879 1.863 1.855 1.849 1.843  0.405 0.402 0.400 0.397 0.394 0.390 

995 995 3.964 3.992 3.875 3.84 3.809 3.782  6.89e-18 0 0 0 0 0 

          0 0 0 0 0 

500 500 3.931 3.852 3.791 3.739 3.694 3.653  0 0 0 0 0 0 

500         0 0 0 0 0 0 

500 7000 1.599 1.586 1.576 1.568 1.562 1.555  0 0 0 0 0 0 

         0 0 0 0 0 0 

10 10 3.081 2.230 1.680 1.192 0.829 0.535  0 0 0 0 0 0 

5 5 2.707 1.475 0.652 0.167 1.04e-17 0 0 0 0 0 0 0 0 

5       0 0 0 0 0 0 0 0 

5 7000 1.034 1.016 1.000 0.984 0.966 0 0 0 0 0 0 0 0 
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p of this size; however, it does  not graph the result.  The solution is a future work topic. 

3.10. Nearest Neighbors Search Algorithm 

Because of the intervals between lookup table entries, we use a two part 

procedure called nearest neighbors (NNs) search to capture the position of  (p′, n′) as it 

relates to known values in T.  Once the known values have been found, they are passed to 

the interpolating function to be ‘read between the lines,’ thereby estimating the MEVs 

defining Horn’s curve for the (p′, n′) coordinate pair.  This section concentrates on the 

NN search and  interpolation is discussed in Section 3.11. 

By nearest neighbors we are referring to the first mapped value in T greater than 

and less than that of each p′ and n′.  Table 3.4 lists the NN search variables and the roles 

they have in the algorithm.  For continuity with the MATLAB code in Appendix II, the 

MATLAB variables are also provided in Table 3.4.  The mechanics of the algorithm are 

straightforward.  The goal is to ‘sandwich’ (p′, n′)  such that 
( ) ( )

'p p p
 
   and 

 Table 3.4.  Nearest neighbor search variables naming schema.   

Variable Role 

p
(-)

 
Lower nearest neighbor variable.  In MATLAB it is 

 nnlp for "nearest neighbor lower p" 

p
(+)

 
Upper nearest neighbor variable.  In MATLAB it is 

nnup for "nearest neighbor upper p" 

n
(-)

 
Lower nearest neighbor observation.  In MATLAB it is 

 nnln for "nearest neighbor lower n" 

n
(+)

 
Upper nearest neighbor observation.  In MATLAB it is 

nnun for "nearest neighbor upper n" 

Row  

Identifiers 

(all) 

During scan of T for a nearest neighbor, row values  

are returned.  Adding 'r' to the upper/lower NN variable names 

provides row information on where the NN variables are located. 

For example, the NN search of T provides rnnlp, rnnup. 

The NN search of S yields rnnln, rnnun.  (Section 3.10.3) 
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( ) ( )
.'n n n     Searching is done in two parts, first in the p column (Column 1) and then 

proceeding to the n column (Column 2) of T. 

3.10.1. Boundary Conditions Not Along The Diagonal  

 Before beginning a search of T for p
(-) 

and p
(+)

, the algorithm checks to see if p′ is 

at a boundary by comparing it  to the minimum and maximum values of p in the lookup 

table.  The minimum and maximum values of the lookup table are dynamically assigned 

each time the program starts; therefore, if the boundary values of the lookup table change, 

the min/max values are updated.  If p is found along boundaries, the algorithm makes 

assignments to the NN variables p
(-) 

and p
(+)

 as given in Table 3.5.  Note that this process 

repeats exactly for n′ after p
(-) 

and p
(+)

 have been given assignments. 

Table 3.5.  Boundary conditions and how to address them in nearest neighbor 

assignments. ±5 and ±100 are the maximum granularities for p and n, resp. 

Condition Solution 

p′ = minimum p 
p

(-)
 = min(p) 

p
(+)

 = min(p) + 5 

p′ = maximum p 
p

(+)
 = max(p) 

p
(-)

 = max(p) - 5 

n′ = minimum n 
n

(-)
  = min(n) 

n
(+)

 = min(n) + 100 

n′ = maximum n 
n

(-)
  = max(n) 

n
(+)

 = max(n) - 100 

Either n
(-)

 = p
(-)

  

or n
(+)

 = p
(+)

 
n

(-)
 = n

(+)
 

 

3.10.2. Boundary Conditions Along The Diagonal 

In a moment we will discuss how the algorithm searches first for 
( ) ( )

'p p p
 
 

and then 
( ) ( )' .n n n     In Section 3.7 the case was made to not process any p > n sized 

data.  Because all combinations of pairs for p
(-)

, p
(+)

 , n
(-)

, and n
(+)

 are needed for 
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interpolation, the algorithm must be able to detect if an NN assignment is made that 

violates the constraint.  In Figure 3.14, we see a notional out-of-bounds configuration.  

Because (p′, n′) was somewhat near the diagonal but not over it, the NN values pulled 

from T are valid at their original positions within the table but creation of new NN 

coordinate pairs resulted in an invalid combination.  For example, in Panel A the 

coordinate (p
(-) 

, n
(-) 

) breaks the constraint.  The solution is to use what is already known 

about the NNs and reassign the coordinate as (p
(-) 

, n
(+) 

).   

The reader might notice that we now have two pairs at the same coordinate.  It 

might seem that something has been lost but this is not the case.  The linear interpolation 

method we are using (Section 3.11) is robust in making computations for overlapping 

lines and lines that cross.  Part I of the interpolation method is to construct two surrogate  

 

Figure 3.14.  Case of out-of-bounds nearest neighbor find.  In Panel A, (p
(-)

, n
(-)

) violates 

the minimum constraint n ≥ p.  Panel B shows the solution is to set n
(-) 

= n
(+)

. 

 

p(-) p’                    p(+)

n(-
)

n
’  

   
   

   
  

n(+
)

(A) Problem:  NN Violates Constraint (B) Solution:  Reassign n(-) = n(+)

p(-) p’                    p(+)

n
’  

   
  n

(-
)
=n

(+
)

p

n

(p(-),n(-))

(p(+),n(+)) (p(+),n(+))(p(-),n(+))
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curves and use subsequent interpolation of the surrogate curves to reach the desired  

solution for (p′, n′).  In the example shown in Figure 3.14, the interpolation routine will  

return a surrogate curve that matches the MEVs mapped for  (p
(-) 

, n
(-) 

).  Therefore, we do 

not have to do anything odd or complex to find and fix the constraint violations.    

3.10.3. Nearest Neighbors Not At The Boundaries 

Returning to our goal of finding 
( ) ( )

'p p p
 
   and ( ) ( )'n n n   , we search in 

two parts, first in the variables column and then moving to the observations column.  The 

mechanics of the algorithm are simple: Centering on  p′, look to find  p′ in T.  If there is a 

direct match, the algorithm records the rows where p′ is found, assigns p
(-)

 = p
(+) 

 = p′   

and move out of the search loop for p′.  Figure 3.15 illustrates the general process.  

If no direct match is found, start a loop counter at 1 and increment p′ to find p
(+) 

 

and decrement p′ to locate p
(-) 

.  We set a loop limit equal to the p granularity (5, for all 

cases) so that the algorithm avoids entering an infinite loop searching for a value that will 

never be found (this should only happen if T is somehow corrupted).  We continue to 

search T iteratively above and below p′ until mapped values for  p
(-)

 and p
(+)

 are assigned.  

Once  p
(-)

 and p
(+)

 are known, rows of T are extracted to form S, a matrix containing the 

bookkeeping columns and the MEV data for p
(-)

 and p
(+)

.  The reason for creating this 

smaller matrix is we already have half the information needed for all coordinate pairs of  

p
(-)

, p
(+)

 , n
(-)

, and n
(+)

.  There is no advantage to searching for 
( ) ( )'n n n    in T.    

Because of the sparsity of the lookup table, the rows of S are truncated to the number of 

non-zero columns for  p
(-)

.  This ensures the rows S are free of the ‘filler’ data used to 

support the structure of the lookup table – zeros have no practical meaning to subsequent 
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Figure 3.15.  Trimming of the lookup table T to sub-matrix S, and finally a matrix of only 

nearest neighbors data, matrix Y.  Only numeric entries comprise actual T, S, and Y. 

calculations.  Column truncation of S yields MEVs that extend only to ( )p
C  .  However, 

in Sections 2.2.4 and 3.9.2 we learned the first p/2 components is where Horn’s curve 

provides an estimate of random noise in the sample.  Therefore, truncation near the last 

component (and well below 1.0  ) is inconsequential to our test.  

T

S

Y

p 1 n 10 1.270725 1.221929 1.186979 1.155608 1.12966 1.101491 1.076144 1.050387 1.027607 1.003946 0.981904 0.960629 0.93759 0.915781 0.892579 0.870993 0.845777 0.820365 0.793967 0.768929

p 1 n 9 1.266149 1.21996 1.183721 1.153124 1.123831 1.097829 1.073742 1.050781 1.029623 1.005339 0.983886 0.961091 0.939228 0.917273 0.895526 0.871741 0.848106 0.82123 0.794311 0.76963

p 1 n 8 1.261288 1.217463 1.181236 1.151392 1.12322 1.097954 1.072017 1.050137 1.029922 1.005494 0.984706 0.962456 0.938777 0.918089 0.895701 0.873146 0.848895 0.826185 0.797971 0.772201

p 1 n 7 1.26274 1.215605 1.179682 1.150078 1.120584 1.095292 1.072599 1.049705 1.02599 1.004911 0.984384 0.962052 0.941478 0.918208 0.898438 0.87609 0.849971 0.825802 0.800367 0.772797

p 1 n 6 1.258341 1.214876 1.181019 1.150341 1.123711 1.097557 1.073636 1.050329 1.028013 1.006241 0.983679 0.963278 0.941286 0.918858 0.895989 0.874852 0.851412 0.823017 0.79893 0.772403

p 1 n 5 1.256962 1.21065 1.179227 1.148427 1.122542 1.095546 1.070963 1.046357 1.025593 1.004555 0.98336 0.962372 0.94184 0.919198 0.898344 0.878262 0.854921 0.829741 0.802068 0.774894

p 1 n 4 1.260213 1.214586 1.178262 1.15012 1.123779 1.096824 1.073761 1.049293 1.026663 1.004166 0.982585 0.961538 0.939432 0.918318 0.898851 0.876579 0.852876 0.828662 0.800078 0.774401

p 1 n 3 1.256324 1.210624 1.178032 1.147049 1.122104 1.094264 1.072111 1.048972 1.026606 1.005685 0.983544 0.960454 0.939946 0.919588 0.898554 0.877865 0.853868 0.829793 0.803862 0.779095

p 1 n 2 1.248327 1.206958 1.174089 1.143845 1.114824 1.090292 1.069709 1.048435 1.026638 1.003513 0.984047 0.962926 0.942645 0.922917 0.902613 0.881252 0.858367 0.834254 0.809073 0.778124

p 1 n 1 1.247674 1.20321 1.168306 1.142011 1.114678 1.08994 1.06724 1.046456 1.025832 1.003746 0.983708 0.964793 0.943287 0.923779 0.904078 0.884286 0.860172 0.838214 0.810589 0.777561

n 10 1.236877 1.197912 1.164644 1.137637 1.111883 1.086613 1.06587 1.045004 1.02606 1.005333 0.985127 0.965494 0.945342 0.925984 0.820365 0 0 0 0 0

n 9 1.231213 1.192365 1.164386 1.136046 1.110778 1.087912 1.065877 1.044627 1.024374 1.006462 0.986853 0.966142 0.945143 0.928449 0.82123 0 0 0 0 0

n 8 1.231293 1.190595 1.155416 1.132952 1.108954 1.084274 1.06444 1.044056 1.025037 1.006302 0.985791 0.965545 0.947183 0.928816 0.826185 0 0 0 0 0

n 7 1.221791 1.186252 1.154838 1.128343 1.107656 1.084107 1.063433 1.043702 1.024636 1.004611 0.986213 0.967112 0.947956 0.929836 0.825802 0 0 0 0 0

n 6 1.218422 1.180781 1.149661 1.125311 1.103071 1.083675 1.063282 1.043616 1.024944 1.005936 0.985946 0.969121 0.952684 0.932485 0.823017 0 0 0 0 0

n 5 1.215257 1.177583 1.150922 1.12541 1.101544 1.082208 1.060242 1.040881 1.022768 1.003882 0.985098 0.969041 0.950311 0.934273 0.829741 0 0 0 0 0

n 4 1.211601 1.172784 1.147016 1.123265 1.101104 1.080066 1.059837 1.040312 1.022821 1.003903 0.986352 0.968638 0.952548 0.934549 0.828662 0 0 0 0 0

n 3 1.208506 1.173251 1.14657 1.12011 1.097008 1.076616 1.059078 1.040479 1.022166 1.005041 0.98693 0.969324 0.950403 0.934829 0.829793 0 0 0 0 0

n 2 1.202613 1.170642 1.144196 1.119456 1.098326 1.078632 1.05886 1.040201 1.022783 1.005924 0.988232 0.971604 0.954247 0.937017 0.834254 0 0 0 0 0

n 1 1.203711 1.168969 1.138963 1.115901 1.094788 1.076558 1.057476 1.039716 1.020971 1.003818 0.986735 0.970595 0.953833 0.937078 0.838214 0 0 0 0 0

n 10 1.19672 1.164276 1.139587 1.116922 1.094611 1.075016 1.057107 1.039006 1.022168 0.938777 0 0 0 0 0 0 0 0 0 0

n 9 1.197223 1.160762 1.136169 1.114326 1.093977 1.074296 1.056546 1.039558 1.021803 0.941478 0 0 0 0 0 0 0 0 0 0

n 8 1.188219 1.156303 1.132106 1.112148 1.092279 1.072538 1.054373 1.036437 1.01977 0.941286 0 0 0 0 0 0 0 0 0 0

n 7 1.189424 1.155723 1.132198 1.111219 1.09069 1.073731 1.055666 1.038698 1.021435 0.94184 0 0 0 0 0 0 0 0 0 0

n 6 1.185515 1.151777 1.129429 1.105574 1.088374 1.071153 1.054559 1.037718 1.021506 0.939432 0 0 0 0 0 0 0 0 0 0

n 5 1.185683 1.152658 1.130013 1.108417 1.088381 1.071621 1.055254 1.037752 1.020824 0.939946 0 0 0 0 0 0 0 0 0 0

n 4 1.183844 1.150954 1.127564 1.104666 1.086434 1.067491 1.052111 1.036702 1.021301 0.942645 0 0 0 0 0 0 0 0 0 0

n 3 1.182793 1.149613 1.125598 1.104048 1.085542 1.067455 1.051349 1.035372 1.020062 0.943287 0 0 0 0 0 0 0 0 0 0

n 2 1.171049 1.141583 1.11899 1.100853 1.084602 1.066757 1.050357 1.035092 1.018503 0.945342 0 0 0 0 0 0 0 0 0 0

n 1 1.172387 1.138505 1.117334 1.098759 1.080909 1.063281 1.048377 1.033337 1.019229 0.945143 0 0 0 0 0 0 0 0 0 0

p 4 n 10 1.168528 1.139 1.117489 1.097846 1.08046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 9 1.163313 1.135217 1.113823 1.095746 1.077544 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 8 1.160532 1.135323 1.112964 1.094409 1.076689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 7 1.1567 1.130066 1.110143 1.092959 1.075698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 6 1.15281 1.12969 1.108204 1.090575 1.073887 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 5 1.149889 1.124388 1.105535 1.08723 1.07343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 4 1.148632 1.122928 1.103655 1.087155 1.071574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 3 1.147007 1.12269 1.101973 1.084502 1.070406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 2 1.142664 1.118933 1.099034 1.083508 1.068929 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p 4 n 1 1.141273 1.11565 1.099315 1.082549 1.06669 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p '

p
(-)

p
(+)

n 10 1.236877 1.197912 1.164644 1.137637 1.111883 1.086613 1.06587 1.045004 1.02606 1.005333

n 9 1.231213 1.192365 1.164386 1.136046 1.110778 1.087912 1.065877 1.044627 1.024374 1.006462

n 8 1.231293 1.190595 1.155416 1.132952 1.108954 1.084274 1.06444 1.044056 1.025037 1.006302

n 7 1.221791 1.186252 1.154838 1.128343 1.107656 1.084107 1.063433 1.043702 1.024636 1.004611

n 6 1.218422 1.180781 1.149661 1.125311 1.103071 1.083675 1.063282 1.043616 1.024944 1.005936

n 5 1.215257 1.177583 1.150922 1.12541 1.101544 1.082208 1.060242 1.040881 1.022768 1.003882

n 4 1.211601 1.172784 1.147016 1.123265 1.101104 1.080066 1.059837 1.040312 1.022821 1.003903

n 3 1.208506 1.173251 1.14657 1.12011 1.097008 1.076616 1.059078 1.040479 1.022166 1.005041

n 2 1.202613 1.170642 1.144196 1.119456 1.098326 1.078632 1.05886 1.040201 1.022783 1.005924

n 1 1.203711 1.168969 1.138963 1.115901 1.094788 1.076558 1.057476 1.039716 1.020971 1.003818

n 10 1.19672 1.164276 1.139587 1.116922 1.094611 1.075016 1.057107 1.039006 1.022168 0.938777

n 9 1.197223 1.160762 1.136169 1.114326 1.093977 1.074296 1.056546 1.039558 1.021803 0.941478

n 8 1.188219 1.156303 1.132106 1.112148 1.092279 1.072538 1.054373 1.036437 1.01977 0.941286

n 7 1.189424 1.155723 1.132198 1.111219 1.09069 1.073731 1.055666 1.038698 1.021435 0.94184

n 6 1.185515 1.151777 1.129429 1.105574 1.088374 1.071153 1.054559 1.037718 1.021506 0.939432

n 5 1.185683 1.152658 1.130013 1.108417 1.088381 1.071621 1.055254 1.037752 1.020824 0.939946

n 4 1.183844 1.150954 1.127564 1.104666 1.086434 1.067491 1.052111 1.036702 1.021301 0.942645

n 3 1.182793 1.149613 1.125598 1.104048 1.085542 1.067455 1.051349 1.035372 1.020062 0.943287

n 2 1.171049 1.141583 1.11899 1.100853 1.084602 1.066757 1.050357 1.035092 1.018503 0.945342

n 1 1.172387 1.138505 1.117334 1.098759 1.080909 1.063281 1.048377 1.033337 1.019229 0.945143

p
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 For the input parameter n′, the process is similar for that of finding p′ in that 

Column 2 of S is searched up and down from n′ until n
(-)

 and n
(+)

 are located.  If n′ is a 

direct match to a value for n, then n
(-)

 = n
(+)

 = n′.  The search step size increment is 1 but 

because of the larger granularity in n the search extends ±100 units away from n′.   

At the conclusion of the search for n
(-)

 and n
(+)

, we can reduce S to four rows.  Each row  

defines a coordinate pair:  (p
(+)

, n
(-)

) , (p
(+)

, n
(+)

), (p
(-)

, n
(-)

), and (p
(-)

, n
(+)

).  These four rows 

are stored in a new matrix, Y.   

 Returning our attention to Figure 3.15, the first  column of T is searched for  p
(-)

 

and p
(+)

 and when found, the rows are identified (blue and gold, respectively) and 

removed from T to form S.  Next, the second column of S is searched for the rows 

containing n
(-)

 and n
(+)

 (green and white rows, respectively) and when located, are 

removed to form Y.  The blending of colors in Y indicates the combination searches 

provides the needed information to carry Y forward for  interpolation. 

3.11. Interpolation–Looking Between the Points 

Interpolation is the estimation of an unknown intermediate data value by fitting a 

function through known data values.  Given the familiar form ( )y f x , the process 

works backwards to find an unknown function f  that represents the known dependent y 

values from the known independent x values.  There are many types of interpolation; the 

one we are specifically interested in is piecewise linear interpolation; piecewise because 

we are seeking intermediate values at multiple discrete points along a path and linear 

because we are not fitting any curvature components between those points.  The 

technique is akin to ‘connecting the dots’ which is suitable in this case, as we have 
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already visualized Horn’s curve passes originates at  1 1,C  and passes through  2 2,C 

and so on until terminating at  ,p pC  .  The reader should recognize that averaging the 

distance between the points is not an acceptable method because the relationship of (p′, 

n′) to the nearest neighbors is not necessarily along the midpoint of the data points stored 

in Y.  The expression for the  piecewise linear interpolation function is given by 

Quateroni & Saleri (2003) 

  1

1

( ) ( )
( ) ( )  for i i

i i i

i i

f x f x
f x f x x x x I

x x






   


 (3.11) 

where ( )f x  is a function denoted by the interval iI as 1[ , ]i ix x   having a set of nodes  

0 1 1p px x x x    .  We can consider the nodes as the number of components in our 

model, each represented by an eigenvalue.  The eigenvalues have been sorted, so the 

inequality requirement holds.   We note that this expression meets our need of proximity 

for the interpolated solution to (p′, n′) because the quotient weighs the result by 

differences in both the dependent and independent values between adjacent points.  

Lastly, the intervals in our problem are finite and closed on adjacent points.    

 MATLAB has several interpolation functions in its library and the one of interest 

to the problem at hand is interp1, a linear piecewise function of the form  

yi = interp1(x,Y,xi) 

where yi is the unknown ordinate at abscissa x and Y are the values of the underlying 

function at the points of the vector or array of xi.  Our query is not structured this way; 

thus far we have treated iC as the abscissa and 
i  as the ordinate.   
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 Instead, we are interested in a scree line which is defined by the coordinate pair 

  , {1,2,..., 1, }i iC i p p     but are providing a (p′, n′) pair which may or may not be in 

the lookup table.  Although (p, n) is used as input to Horn’s algorithm during the random 

data preprocessing step, determining the (p′, n′) pair from a scree line is not so clear:  We 

are interpolating one value on the vertical axis for two points along the horizontal axis 

and interp1expects a unique x for every ( )f x .  A multistep approach, one where an 

intermediate calculation provides a path to a final solution, is required.  Therefore, if we 

can format the input we send to interp1, the function will provide the intended result. 

3.11.1. Surrogate Curves 

 In Figure 3.16 there are two places on the graph where the intermediate solution is 

needed.  The first is at the coordinates above (p′, n′) given by (p
(+)

, n
(-)

) and (p
(+)

, n
(+)

).  

The second set of coordinates is below (p′, n′)  at (p
(-)

, n
(-)

) and (p
(-)

, n
(+)

).  The multi-

dimensional interpolation is done this way to maintain order in the nearest neighbor 

matches.  Otherwise, if only one curve is interpolated from all the nearest neighbors, we 

will have inconsistent results from mixed coordinates.  Interpolating two surrogate curves 

evu and evl to find the third and final curve maintains the data pedigree.   

evu(i) = interp1([nnln;nnun],[mevnnln(i); mevnnun(i)],n) 

evl(i) = interp1([nnln;nnun],[mevnnln(i); mevnnun(i)],n) 

Here, ev is the unknown eigenvalue along the (u)pper or (l)ower surrogate curves at 

component index i; nnln and nnun are the lower and upper NNs for observations;     

and mevnnln and mevnnun are the mean eigenvalues for nnln and nnun at index 

i, respectively.  (In Appendix II the mevnnln and mevnnun are given in terms of rows  
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of Y.  These names are used here for simplicity in discussion.)  For reference to the 

nearest neighbor naming schema, please refer to Table 3.4. 

 Lastly, n is n′, the unknown we wish to find.  MATLAB will perform index 

operations of vectors without counters; however, we have a special case of a single point 

on the curve due to multiple responses for one predictor.  Iteration takes place for all Ci, 

i = 1 to p
(-)

.   

3.11.2. Interpolation of Horn's Curve 

 When we have both surrogate curves, we can next interpolate the overall solution 

using evu and evl as inputs into getev as  

getev(i) = interp1([nnup;nnlp],[evu(i); evl(i)],p) 

Here, getev(i) are the MEVs for (p′, n′) for each component Ci (still observing i = 1 

to p
(-)

); nnup and nnlp are the lower and upper NNs for variables (Table 3.4); and p is 

p′, the unknown part of our point-of-interest (p′, n′).  We similarly have to iterate across 

each point in evu and evl but when finished  have arrived at the desired solution: a 

completed Horn’s curve for the user-supplied (p′, n′) input. 

 It is helpful to demonstrate an example of how the interpolation sequence occurs.  

Returning to Figure 3.16, we see a visual representation of fictitious data from Y in the 

form of four plotted upper and lower NN curves.  The two dark blue lines represent upper 

NN pairs (p
(+)

, n
(-)

)  and (p
(+)

, n
(+)

) and the gold lines fix lower NN pairs (p
(-)

, n
(-)

), and  

(p
(-)

, n
(+)

).  Round markers signify the corresponding MEVs for each component C1 - C5 

with respect to the NN curves.  Brackets indicate the range of the anticipated Horn’s 

curve solution for (p′, n′).   No interpolation has yet occurred.   
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Figure 3.16.  Pictorial representation of the upper and lower nearest neighbors curves. 

Mean eigenvalue data (not shown) are along the vertical axis.  Components (Ci) are 

along the horizontal axis.   

 

 

Figure 3.17.  Interpolation of the upper surrogate curve at (p
(+)

, n′) and the lower 

surrogate curve at (p
(-)

, n′).  Features created during this step are shown in red. 

 

(p’, n’)

(p(-), n(-))

(p(-), n(+))

C1 C2 C3 C4 C5 …

(p(+), n(+))

(p(+), n(-))

(p’, n’)

(p(-), n(-))

(p(-), n(+))

C1 C2 C3 C4 C5 …

(p(+), n(+))

(p(+), n(-))

(p(+), n′)

(p(-), n′)
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In Figure 3.17, the upper and lower surrogate curves defining evu and evl have been 

found by using two pairs of known curves (the upper and lower NNs from Y) for 

interpolation of each unknown curve at the coordinate (p
(+)

, n′) and at (p
(-)

, n′).  Features 

that have changed or been added to on the chart are indicated by red text boxes, lines, and 

markers.  We have located n′ from determining ( ) ( )'n n n   .    

The process is repeated in Figure 3.18, this time evaluating the two surrogate 

curves for the unknown Horn’s curve.  The interpolation routine getev has found p′ by 

determining its relationship as
( ) ( )

'p p p
 
  .  We now know each 

i  for each component 

Ci, thereby defining the estimate of Horn’s curve for (p′, n′) and can provide the graph for 

visual analysis.  Figures 3.19 - 3.22 show full results rendered in MATLAB. 

 

 Figure 3.18.  A finished, interpolated solution of the estimated Horn’s curve for 

(p′, n′).  The solution is shown in solid red; the surrogate curves are in view to orient the 

interpolation.  Each ( , )i iC  is representative of a point along the curve.  All 
i shown are 

progeny of the surrogate curves from Y and the nearest neighbors extracted from T. 

 

(p’, n’)

C1 C2 C3 C4 C5 …

(p(-), n′)

(p(-), n′)

 1 1,C

 5 5,C

 2 2,C

 3 3,C  4 4,C
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Figure 3.19.  A very small dataset.  The upper NN curves (blue) cross at p = 5 yet the 

surrogate curve stays well-banded.  This indicates the interpolation routine is robust with 

regard to which line is above or below the other.  The figure legend describes in detail 

the coordinate pair of each curve drawn. 

 

 

Figure 3.20.  A small dataset.  Notice the close approximation among the curves. 
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Figure 3.21.  A medium dataset.  All the curves have converged around the Horn’s 

algorithm solution for random data (solid red line).  This graphic uses the same size of 

data Horn presented in his 1965 paper. 

 

 

Figure 3.22.  A large dataset.  There is much less to see in differences between mapped 

and interpolated in dimensions of this size. 
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Note that the figures show the upper and lower curves, both from mapped data  

and interpolated surrogate points.  The solid red line running through the middle of the 

figures represents the interpolated solution and is a direct computation of (p′, n′) using 

EigenMean (Figure 3.3).  Notice that some of the upper/lower nearest neighbor curves 

cross (Figure 3.19 near p
(-)

 = 5).  The observation that this does not affect the accuracy of 

the interpolating function is reassuring.  Exploratory results are in agreement with 

expectations from earlier visual analysis.  Note that in this section all interpolation was 

carried out on random data – no sampled data were used in the analysis. 

3.12. Linear Regression Second-Order Model 

The primary motivation behind developing a linear regression second-order 

model (2OM) is to save space.  Earlier we learned that the lookup table is sparse – it is 

full of zeros because the rows only contain data equal to two plus the value of the 

variable p.  If the data already collected (the lookup table) is used to fit a quadratic 

polynomial for each (p, n) row, then the size of the lookup table can be greatly reduced. 

3.12.1. Suitability of A Second-Order Model 

The reader might question "Why a second-order model – why not fit a higher-

order polynomial?"  The answer is in the shape of Horn’s curve: its simple characteristics 

– a slightly bowed line without inflection points – does not require a complex 

polynomial.  Simplicity and parsimony in the model is desired.  Three coefficients 

provides a suitable representation of the curve.  More coefficients add data back into the 

lookup table and does not provide a more accurate solution. 
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3.12.2. Least-Squares Estimation of Regression Coefficients 

 The method of least-squares seeks to fit a line through regressor data points X by 

minimizing the differences between the observed responses at y and a model predicted 

response of ŷ  (in this case, ˆ ˆλ y ).  In matrix notation, the model is    

 y = Xβ+ε  (3.12) 

where β are the regressor coefficients, ε is the error term (y and X are already defined). 

 

1 11 12 1

0

2 21 22 2

1

11

1 2

1

1
,  ,  ,  

1p p p p

y x x

y x x

y x x


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




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      
         
      
       

          

y X β ε  (3.13) 

 The form of quadratic model that fits the problem at hand, interpolating an 

estimated Horn's curve for (p′, n′), is given by 

 2

0 1 11
ˆ ˆ ˆ ˆ    λ C C  (3.14) 

where λ̂ is a vector of estimated mean eigenvalues and  C is a vector of components 

numbered from 1 to p.  For amplifying information regarding the derivation of Equations 

(3.12) - (3.14), please see the text by Montgomery, Peck, and Vining (2006) or similar 

source on linear regression techniques. 

 The MATLAB built-in function library provides a function called polyfit that 

evaluates vector C to return a vector of least-squares estimated coefficients β̂  at the 

specified order of the polynomial (2 for a quadratic).  Readers may be interested to learn 

that instead of formatting coefficients in ascending power order, polyfit outputs 

coefficients in a descending power format (β11, β1, β0) (Recktenwald, 2000). 
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 We use polyfit to evaluate each row of MEVs, thereby reducing the lookup 

table to only five columns (two for bookkeeping of the coordinate pair and three for the 

polynomial constant β0, linear β1 coefficient, and quadratic β2 coefficient).  The reduction 

in file size is significant, from almost 80 megabytes of MEV data to just 606 kilobytes of 

2OM data.  A snapshot of the table is given below.  For reference, compare to the original 

lookup table in Table 3.3. 

Table 3.6.  Sample of the coefficients lookup table. Total width is five columns–two for 

coordinate pair bookkeeping and three for coefficients entries. 

 

To display the data, MATLAB’s function polyval uses the β̂  coefficients from 

a row in the coefficients lookup table to estimate λ̂  for a particular (p, n) and returns an 

array we can easily plot.  Producing Horn’s curve is a simple matter of rendering the    

(C, λ̂ ) coordinates in a figure.  We shall see that the 2OM curve is not truncated at p
(-) 

during interpolation as it is for the MEV approach. 

3.12.3. Sufficient k for Linear Regression 

In building the 2OM, the anticipated approach is to use least-squares estimation to  

find the model coefficients.  We need to ‘trust’ that the lookup table data will adequately  

p n 11̂  
1̂  0̂  

1000 1005 4.5335e-6 -0.0078 3.3774 

1000     
1000 7000 6.3377e-7 -0.0019 1.7546 

     
500 500 1.8203e-5 -0.0156 3.3876 

500     
500 7000 1.2644e-6 -0.0025 1.5139 

     
5 5 0.1763 -1.7302 4.2507 

5     
5 7000 4.9733e-5 -0.0170 1.0504 
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define the regressed line.  Therefore, due diligence is required to verify the lookup table 

entries can be used as a starting point for the model.  Note that this is a progress check to 

verify data is properly conditioned; it is not an exercise to reevaluate if changing the 

iterations of k in the MCS will give different results.  (From the  discussion in Section 3.4 

we already know k affects the smoothness of the data.)   

 In this small scale experiment, the MCS are re-accomplished for varying k in 

powers of 10 from 0 to 3 (10, 100, 1,000, and 10,000).  At the end of each k runs, the 

indexed eigenvalues are averaged, stored, and the process repeated until k completes the 

last of the 10,000 iterations.  This is done for only one example problem, that of 297x65 

(which is, if one refers to Figure 3.4, Horn’s sample size from his 1965 paper).  Our 

interest is with how well k = 100 ‘behaves’ because it is the size of the MCS  iteration 

 

Figure 3.23.  Subplots of Horn’s curves produced from various k iterations of Monte 

Carlo simulations.  Lines of red circles are MEVs, green lines are the 2OM fitted curves. 
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parameter k from which our existing data is constructed.  In Figure 3.23 we see the results 

of the experiment.  The overlapped green line on top of the red o’s marks each eigenvalue 

along Horn’s curve and compares the lines for any trends with respect to k.  As viewed in 

the upper right subplot, k = 100 offers a satisfactory fit to the example dataset and while 

there are some small variations between the 2OM and MEV lines, there is no trend 

present that would be cause for alarm.   

We also observe that k = 10,000 is the best fit in that the two lines follow the exact same 

path (this observation should be expected for such a high value of k.)  

 However, the difference between the two solutions is slight and does not merit a 

hundredfold increase in computation time.  Based on these exploratory runs, k = 100 

remains a suitable selection for purposes of linear regression least-squares second-order 

model fitting. 

3.12.4. Model Adequacy 

 A standard and necessary procedure for linear regression model fitting is checking 

for basic assumptions (Montgomery, Peck, & Vining, 2006:122).  They include: 

 - A linear relationship exists between the response and predictor; 

 - The error term ε has zero mean; 

 - The error term ε has constant variance σ
2
; 

 - The errors are uncorrelated; and 

 - The errors are normally distributed. 

In the case of the 2OM, the  response ̂ is a linearly independent (orthogonal) product of 

random variables sampled from the known ~ (0, )pNID I population distribution defined 
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for the MCS.  At no point is noisy, real-world data introduced into the MEV stream; 

therefore, the model adequacy assumptions are satisfied. 

3.12.5. Nearest Neighbor Interpolation for the 2OM 

 The lookup table has been reduced to five columns but still needs to be searched 

during a (p′, n′) query for nnlp, nnup, nnln, and nnun.  The methodology discussed 

earlier for searching and sorting NNs (Section 3.10) and interpolating (Section 3.11) has 

not changed; the only difference is fewer columns of data need to be organized (each row 

in the coefficients lookup table is five columns wide).  New methodology employed. 

3.12.6. Random Data Graphs Comparisons 

There is motivation to compare visually the 2OM graphs to those produced by the  

original lookup table.  Of concern are "Was any accuracy lost for the reduction of lookup  

table size?" and "Does the curve fitting and least-squares introduce variation to the 

method?"  The parsimony in the 2OM is not worth risking the accuracy already available 

to us in the MEV.  Fortunately, the answer to both questions is "No."   

 Visual analysis of side-by-side comparisons of the graphics indicates performance 

is similar for each strategy.  In Figures 3.24 - 3.26, the 2OM figures are in Panel A and 

the MEV ones are in Panel B.  The largest difference appears along the horizontal axis.  

Because the 2OM can evaluate each curve at a number of points equal to p′, the 

horizontal axis in the 2OM figures extend to p′ and is not truncated at ( )p
C   (as it is for 

MEVs during the NN search).  Additionally, the 2OM curves appear to be smoother.  In 

comparison, the MEVs are plotted in a ‘connect-the-dots’ fashion with no algebraic 

computation of intermediate values.   
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Figure 3.24.  Visual comparison of results for a very small dataset (11,16). 

 

Figure 3.25.  Visual comparison of results for moderate data size (65, 297). 

 

Figure 3.26.  Visual comparison of results for larger data size (800, 3266). 
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In each strategy the known solution (‘the truth curve’; an application of Horn’s 

algorithm EigenMean from Figure 3.3 for direct computation of the MEVs describing 

the coordinate pair) is calculated and overlaid into each figure as a heavy, solid red line.  

In nearly every  instance, the interpolated (p′, n′) Horn’s curve is indistinguishable. 

The visual agreement between solution strategies and within the interpolation 

routine indicates valid results are being produced.  Therefore, the methodology developed 

thus far is capable of producing final results and we are ready to see how the final 

solution for estimation Horn's curve comes together in Chapter IV. 

3.13. Methodology Summary 

In this chapter, a technical examination of Horn’s paper was conducted first to 

understand the method and then to build an algorithm capable of displaying Horn’s curve.  

The individual elements of the algorithm are: 

- Monte Carlo simulation generation of random data; 

- Creating correlation matrix of the random data;  

- Eigendecomposition of the correlation matrix; 

- Indexing, averaging, and storing the MEVs in the lookup table; 

- Searching the lookup table for nearest neighbors p
(+)

, p
(-)

, n
(+)

, n
(-)

  points     

according to one of four cases, depending upon the location of (p′, n′) in the     

lookup table; 

- Interpolation of nearest neighbors to produce surrogate data before in-turn 

interpolating the surrogate data for estimated MEVs; and  

- Plotting of the estimated MEVs to create Horn’s curve for (p′, n′). 
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Once the MEV-based algorithm was complete, various sized (p′, n′) pairs were selected 

and used to query the lookup table.  The interpolated curves were overlaid with a direct 

computation of Horn’s curve of (p′, n′).   

 After MEV algorithm functional integrity was verified, the next step consisted of 

refining the lookup table data into a table of linear regression second-order coefficients.  

The second-order model algorithm permitted an 80-fold reduction in lookup table size 

with no loss of graphical accuracy in the completed Horn’s curves.  Visual analysis 

verified both algorithms perform as intended and have comparable results to each 

 other.  Our original goal is to complete Horn’s test for an estimate of dimensionality for 

an n x p sampled dataset within range of the lookup table.  In Chapter IV we will test the  

algorithms using sampled data from real-world experiments and produce the research 

objective of this thesis: An accurate stopping rule to produce a determination of 

multivariate data dimensionality using an estimate of Horn’s curve. 
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IV. Results and Analysis 

 

4.1. Chapter Overview 

This chapter extends the exploratory analysis work done earlier to solving real-

world problems.  The objective is practical application; to make  a contribution to 

practitioners wishing to solve principal components-type problems.  To summarize our 

problem statement:  Integral to successful PCA is determining when to stop extracting 

components – the matter is not a trivial one.  Our solution – the goal – is to make Horn’s 

test easier to use, meaning "with minimal time and effort."  The large amount of random 

data needed has been preprocessed into manageable, nearly instantaneously available 

form, and algorithms have been written to produce an answer.  The final link to a useful 

solution is bringing the theory to the application and synthesizing them.   

4.2. Sampled Data Source 

 Thus far we have experimented with random data of known size.  We surveyed 

the literature review to see where and how large typical studies might be but the actual 

what from a published database has not been used until now.   Revisiting the UCI 

website, eleven datasets were selected as ‘test subjects.’  The reasons for selecting these 

particular ones are many: The type of data they contain (regression or classification), how 

much conditioning of the data was needed (non-numeric characters, missing values, NaN, 

Inf, non-invertible are all no-gos), a representative sample for the lookup table (right-

sized n x p).  As much as possible of the original data was kept; editing and conditioning 

was kept out to a minimum.  Even so, the findings and evaluations given here may differ 

from other studies accomplished with the same data.  Table 5.1 lists the datasets. 
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4.3. Putting It All Together 

We have sufficient and necessary components to marry the theory with 

application.  In Chapter III two flowcharts were used to describe how the two solution 

strategies function individually – Figure 3.2 for random data and Figure 3.10 for sampled 

data.  Accompanying MATLAB scripts, one per each flowchart, details a body of 

functional code (Figure 3.3 and Figure 3.11, respectively).  However, the two parts are 

not much use individually; the conjunction is required to produce the solution for an 

accurate estimation of how many components to extract for PCA. 

4.4. Running of the Main MATLAB Script for The Mean Eigenvalues Approach 

 Before proceeding to the visual results of Horn’s curve, we first complete a 

progress check to verify functionality among the search, interpolation, and curve 

producing subroutines.  The main program script is called HornsCurveSampled.m.  

and there are variants for each the MEV and 2OM.  The only difference is how the 

different dimensions of the two lookup tables are handled. 

 When this program is run, we are given a choice of multivariate studies in the 

directory and also presented an option to load one under another name.  In our example 

case, we choose option '1' for the Forest Fires dataset.  The main program loads the 

lookup table, determines the size of the lookup table, retrieves the user-requested file,  

loads the data matrix, and then sweeps the data for size requirements (has to be within 

range of T) and ensures it is not underdetermined (p > n).  If a problem is found, the user 

is notified what the problem is and given a chance to either reload another file or quit.  

See Figure 4.1 for an image of the user input screen/menu. 
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Figure 4.1.  Main program user interface. 

Once the data preliminaries check out, the algorithm assigns the number of rows 

of the matrix to n′ and the number of columns to p′.  Control is then passed to the 

function findcurves.m which is the search algorithm used to find the nearest 

neighbors pairs in the lookup table, interpolate the surrogate curves, and calculate the 

estimated Horn’s curve.  The interpolated curve is passed back and 

HornsCurveSampled.m again has control over program flow.  Next, the dataset 

 This script will estimate Horn's Curve to aid in making a   
Principal Components Analysis (PCA) dimensionality deter- 
mination for an actual--sampled--data set.  Horn's Curve     
is found by interpolating known, "ideal" data of size         
equivalent to the actual sample size.  Constraints regarding  
input and what the script can do are listed below.       
The input values must be within these ranges:                 
                                                             
  # of variables (p)    --> {5,1000}  
  # of observations (n) --> {5,7000}  
                                                              
A crucial condition to consider is underdetermined data; that is, 
data having fewer observations n than features p.  PCA of 
underdetermined data is possible; however, this script does not 
accept such datasets.                                   
                                                              
Please choose a dataset to load.  Type the number and press 
'Enter.'  If the dataset is not listed, choose '0' (zero) and type 
in the filename.                                     
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(1)  Forest Fires                                             
(2)  Glass                                                    
(3)  Parkinsons                                               
(4)  SECOM                                                    
(5)  Seeds                                                    
(6)  Semeion                                                  
(7)  Steel Plates                                             
(8)  Wisconsin Breast Cancer Study                            
(9)  Wines (Set 1)                                            
(10) Wines (Set 2)                                            
......................................................... 
(0)  Manually enter a filename                                
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-> Please make a selection (1-10) or (0):  
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undergoes correlation, eigendecomposition, and sorting of the eigenvalues (Figures 3.10 

and 3.11; recall that there is no averaging of sampled data eigenvalues).    

At this point, the merging of the real-world data (the user specified file) and 

idealized data (the interpolated solution) occurs and Horn’s test takes place.  Points along 

the sampled curve and the estimate of Horn’s curve are checked component by 

component.  These are the cases that may be encountered and the outcomes: 

- If the sampled data (plotted in the scree line) is larger than Horn’s curve at a 

component, then that component is considered significant and it should be 

extracted for analysis. 

- If the scree line falls below Horn’s curve, then those components are 

considered insignificant and may be discarded. 

- If a component is below Horn’s curve but above Kaiser’s criterion at λ = 1.0, 

then it is considered contested.  Contested points should be further evaluated 

by the analyst for significance to the study at hand. 

 At this time we can get information about how much variance the components in 

each of these cases is representing.  This is vital for PCA since the summarization of 

variance per component and the cumulative amount of variance the dimensionality 

estimate retains is of value to the practitioner.  The variance information will not be 

shown on the graph because it is too unwieldy; rather, it will be displayed in the 

MATLAB Command Window and stored in vector format (located in the variable 

Workspace) should the analyst want it.  
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4.4.1. Figure Output and Visual Analysis 

The two components are stitched together to produce one figure displaying the 

estimate of Horn’s curve and the results of Horn’s test.  A quick visual shows what the 

individual pieces looked like and how they come together in the solution. 

 

Figure 4.2.  Conjunction of sampled and random data components in the finished product 

using the interpolated mean eigenvalue (MEV) solution of Horn’s test. 
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In Figure 4.2, we see the solution (large center graphic) is a composite of the  

sampled data (upper left) and random data (upper right) halves.  The solution includes not 

only an estimation of Horn’s curve, it also features two common visual elements of PCA 

– Kaiser’s criterion and the scree line.   

 

Figure 4.3.  Detailed description of the interpolated solution of Horn’s test. 

Figure 4.3 provides a detailed explanation of each feature in the graphic and how 

to interpret them.  The legend box contains a count of the components in each category.  

In this example, there are four components that are likely candidates for extraction (green 

points), eight that could be discarded due to low explanation of total variance (grey 

points), and one component that is contested (red point).   

Scree Line
Sampled Data; Eigenvalues 

(Dots Along The Scree Line) 
Are Relative Size of 

Components

Horn’s Curve
Random Data; Mean 

Eigenvalues Interpolated from 
The Lookup Table.  Length 

Truncated by Nearest Neighbor 
Lower Variable for MEV soln.

Red Point = Contested
Horn’s Test → Discard

K1 → Extract
(1 ea)

Gray Points = 
Not Significant→ Discard

(8 ea)

Green Points = 
Significant→ Extract

(4 ea)

Kaiser’s Criterion

# In Each 
Component 

Category

MEV is the solution strategy used to build this chart, “ForestFires” is the dataset name, (517x13) is the data size

Components; 
Eigenvectors 

Numbered 1 to p
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The figure is designed to be a stand-alone analysis product; that is, it can be 

shared electronically using any common picture file formats (.JPG, .PNG, .BMP, etc.)  

For this reason, the algorithm used to produce the result, the dataset name, and the data 

size are all included in the figure title.  Referring again to Figure 4.3, the example shown 

is "MEV Interpolated", "ForestFires", and "(517x13)", respectively. 

4.4.2. Components Dimensionality and Variation Summary Output 

 Horn’s test is a visual analysis tool to aid in determining dimensionality but it is 

only one tool.  Because PCA is a variance-oriented technique, understanding how the 

variance is distributed among the components provides the analyst with more 

information, often leading to better solution options for decision makers.  The final step 

in completing Horn’s test is to read back the variance dispersion information captured 

during evaluation of each component in relation to Horn’s curve.  This is done in the 

MATLAB Command Window and appears below the main program user interface 

(shown previously in Figure 4.1). 

 Figure 4.4 is a summary of the dimensionality assessment.  The dimensionality 

estimate is equal to the number of components that meet Horn’s test criteria for 

extraction.  This is the actionable part of the analysis and is the solution to the problem 

statement.  Following the dimensionality estimation, we can determine how the variance 

is spread among the components.  In the Forest Fires data, one component (C5) is 

contested and its eigenvalue is 1.0637.   
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Figure 4.4.  Components dimensionality and variance summary output. 

 By applying Equation (3.8) (we do not specify a target variance T in this case) to 

the j = 4 principal components in the dimensionality assessment, we get a variance 

proportion of 
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which is the value given for "Proportion of total variance explained 

by Horn’s" in Figure 4.4. 

 Below that, in the next two lines, is the result of applying Equation (3.7). 

 -> Please make a selection (1-10) or (0): 1 
Getting eigenvalues of (517x13) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 4 principal components by 
Horn's test.  There are a total of 1 eigenvalues below Horn's 
curve and greater than K1.  These eigenvalues should be further 
evaluated against additional criteria for usefulness. 
(Additional criteria == qualitative and quantitative    
aspects of the study that are particular to a dataset,  
purpose of the study, and analyst selection.)   
 
-->Component #: 5  Eigenvalue: 1.0637 <-- 
 
Proportion of total variance explained by Horn's = 58.11%. 
Additional proportion of total variance explained by the 
contested "between the curves" components: 8.18%. 
If 1 contested components are included, proportion = 66.29%. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS ForestFires   
 
End of processing. 
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If the two findings (Horn’s test and any contested components) are combined, Equation 

(3.8) is reevaluated for significant and contest components and the proportion of variance 

explained by the five components is 0.6629, or 66.29%.  A gain of 8.18% variance might 

be significant to the analyst, and if so, then the number of principal components equals 

five.  The feature of tabulated variance permits some flexibility in the analyst’s 

assessment. 

 Included as information to the user are the top two lines (above the *Summary* 

block); they occur during script execution just to show the program has not stalled in a 

routine.  For reference, the user can see what size the data is without having the figure 

(such as Figure 4.3) visible.  The last couple lines of the screen output is a read back of 

the filename used for the analysis and notification that the script has completed execution 

and has stopped processing.  

4.5. Running of The Second-Order Model Script 

We have just seen how to select a dataset and interpret the visual and summary 

results for the mean eigenvalue solution.  What about the linear regression second-order 

model (2OM) and the table of coefficients?   

The two approaches use an identical user interface for input and output.  There are 

a few subtle differences within the code, mostly due to what lookup table and how the 

mean eigenvalues are determined; otherwise, each version shares the nearest neighbors 
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search, interpolation of surrogate curves, and data plotting routines.  To distinguish the 

graphical results, the titles of every figure include what type of solution was used to 

produce it (MEV or 2OM).   

We conclude this section with an example of output from the 2OM solution 

approach.  It is shown here in Figure 4.5 using the Forest Fires data from Figure 

4.5, this time without the bumper stickers. 

 

Figure 4.5.  Interpolated second-order model (2OM) solution of Horn’s test of the 

ForestFires dataset. Details are similar to those found in Figure 4.3.  

4.6. Challenges 

 Constructing an algorithm that handles data of different sizes is not problematic; 

handling data within stated constraints (min/max bounds in the lookup table, no 

underdetermined sets in this case) requires more methodical planning and logic in the 

scripts but is still controllable.  The greater unknown is the format of the data existing in 
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the real-world: Weak or strong correlation, multicollinearity, non-constant variance, 

different probability distributions are all valid concerns.  A perfect solution does not 

exist; a calculated manner in which these issues are handled is a reasonable goal.  An 

attempt was made to stress the algorithms presented herein using a representative sample 

of both size and variety of data.  Certainly not every possible configuration of data was 

presented to the algorithm for testing.  Therefore, the author anticipates that unexpected 

results in the future may be a possibility due to the behavior of the eigenvalues affected 

by  characteristics of the sample data.  Part of being an analyst is discovery through 

exploration; situations just described are opportunities to investigate underlying causes. 

4.6.1. Lookup Table Size 

Presently, the limiting factor in application is the size of the lookup table.  The 

only way to increase its size is to run Monte Carlo simulation on unmapped (p, n) pairs in 

the study region.  As the data size increases, particularly as the number of variables 

grows, it will take much longer to add each new row to the lookup table.  Expanding the 

(p, n) region-of-interest is possible and is made more attractive given that the 2OM is 

comparable in performance to the MEV.  It is straight-forward to process the least-

squares fitted coefficients and augment the lookup table.  The implication is the table of 

mean eigenvalues will not advance beyond what currently is in the application, but given 

the ancillary goal of creating as small a data footprint as possible, the omission of future  

entries to T is plausible. 
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4.6.2. Software Required 

Not every computer runs MATLAB and not every practitioner is well-versed in 

MATLAB usage.  As such, the target audience is presently only MATLAB users.  

Fortunately, MATLAB output is used easily in other applications: 

- Graphs can be shared as metafiles or a number of picture formats and 

included as objects in MS Word® and MS PowerPoint®. 

- All Command Window text can be copied and pasted as editable text and 

MATLAB variables can be copied from the Workspace and moved to MS 

Excel® for editing in a spreadsheet (the opposite is also true). 

- A low-tech but workable approach is to copy and paste the Horn’s test data 

into an Excel spreadsheet and use the graphing capability of Excel to 

reproduce the figure in MS Office®. 

 A desirable solution is cross-product porting of the script to Java® or MS Office.  

The MathWorks produces a free compiler and packager called MCR (MATLAB 

Compiler Runtime).  This author has not worked with MCR but it appears to offer an 

excellent way to share .m files among users who do not have access to MATLAB.   

4.7. Chapter Summary 

The results achieved quite satisfactory and meet the stated research objective:   To 

develop an accurate tool for determining the number of components to retain.  The 

additional objectives of automating the tool to remove unwarranted subjective evaluation 

of the results were also reached.  Additionally, the non-primary objectives of 

incorporating common visual elements of PCA stopping rules (the scree line and Kaiser’s 
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 criterion) to assist the practitioner were also met.   

Finally, the MATLAB user interface developed makes easy work of loading data 

and then provides summary results for the dimensionality estimate and any contested 

components (that is, Horn’s test and Kaiser’s criterion arrive at different conclusions).  

The user is provided information regarding the total amount of original variance 

explained by the dimensionality assessment and, if there are contested components, what  

additional variance the contested components represents. 

Comparisons of both solution algorithms are thus far identical in both visual 

analysis and variance summary findings.  The side-by-side results of each comparison are 

not included in this chapter; please see Appendix I: Results for Sampled Datasets.  For a 

line-by-line list of all the computer code leading to a result described by this thesis, 

please see Appendix II: MATLAB Scripts.
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V. Discussion 

 

5.1. Relevance of the Current Investigation 

Automation of Horn’s method provides a powerful tool for PCA.  During the 

literature review, several authors published findings in regard to the accuracy of various 

component extraction stopping rules: Horn’s technique received remarks verifying a high 

level of component identification accuracy.   

In contrast, the most widely-used stopping rule is Kaiser’s K1 criterion: Retain 

components with an eigenvalue greater than or equal to one, discard those less than that.  

A simple analogy for this thinking (and there are certainly others) is one would not read a 

book and then write a lengthier summary than the book is long, so why keep a factor that 

has less summarizing power than the variable it is meant to transform?  This is where 

science bows to art; the analyst is responsible to his practice to make an informed 

decision about the purpose of the analysis. There are qualitative aspects that have to 

augment all of these stopping rules.    

5.2. Conclusions of Research 

The author of this thesis is of the opinion why Horn’s procedure is not used more 

often is it requires more preparatory work by the analyst and, to this author’s knowledge, 

popular statistics software packages do not offer direct computation of it.  Lack of 

understanding regarding the black box nature of specialized commercial software leaves 

one at a disadvantage when unique challenges require unique solution strategies – if the 

only tool in the tool shed is a hammer, suddenly all the problems appear to have nails for 

solutions.  It is likely not everyone has the time, skill, or impetus to pursue application of 
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Horn’s test for an individual problem.  It is hoped that the work shared in this thesis 

permits others to gain insight into multivariate analysis solution techniques they might 

not previously been inclined to explore. 

5.3. Limitations 

 Only eleven datasets available in the public domain were tested and it is possible 

that data of unknown configurations could present pathological scree lines.  One such 

case (and there are likely others) is a scree line that resembles a sideways view of a set of 

sloping steps that may hop back and forth across Horn’s curve.  Such a dataset probably 

exists – it meets the stated assumptions for k, is not underdetermined, is monotonically 

decreasing – and will present dimensionality results that have not yet been considered. 

It is also anticipated a case exists in which the MEV and 2OM solutions may 

disagree in their conclusions; that is, each algorithm presents a different estimate of 

dimensionality.  For instance, datasets featuring shallow intersection angles between 

Horn's curve and the scree line (i.e., almost parallel along some interval of components) 

will likely to lead to under extraction of components by the 2OM.  Since under extraction 

discards information, it is this author’s recommendation that, should this situation be 

encountered, the MEV strategy be used to verify the 2OM dimensionality assessment. 

5.4. Future Work/Further Research 

1) Confirmatory analysis of the accuracy of the Horn’s test algorithm should be 

an immediate next step.  This can be accomplished by structuring of random data with 

known dimensionality and then presenting it to the algorithm as a sampled dataset. 
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2) Creation of a routine to handle limited problems beyond what the lookup table 

can immediately reference.  A dry run on a real-world dataset of 112,000+ observations 

on 121 variables was successfully completed in under five minutes of processing time.  

There is certainly room to expand in solving small p, large n problems without adverse 

expenditure of computer resources while analyses await.  

3) Combining the MATLAB script with a graphical user interface capable of 

giving easier access to the results is desirable. 

4) Artificial neural networks present possibilities to learn the region-of-interest.  If 

so, not only can estimates of dimensionality be determined for (p′, n′) but the need to 

have ready the (p, n) lookup table is eliminated. 

5) Principal components analysis is a gateway to other multivariate analysis 

techniques.  Expanding the code, or modularizing it, so that other methods (specifically 

factor analysis) can access the dimensionality estimation extends application. 



 

98 

9
8
 

 

 

Appendix I: Results for Sampled Datasets 

 

The University of California-Irvine Center for Machine Learning and Intelligent Systems 

data repository (http://archive.ics.uci.edu/ml/) was the source used for real-world data.  

Without the resources of the UCI website, this thesis would have been limited in scope.   

 During the course of experimentation, some data would not complete 

eigendecomposition due to NaN, Inf, or non-numerical data types (missing entries or 

string characters).  Trimming of data occurred at the minimum level necessary to achieve 

functionality.  Wherever possible, rows (observations) were deleted in lieu of columns 

(variables).  As such, these truncations may result in smaller sizes of the named datasets 

than from what is found elsewhere or used by researchers for other analyses. 

 The bibliography lists contributing donors or the stewards of such data; however, 

in an effort to invite additional exploration, the URLs of each dataset is given here: 

Table 5.1.  Web addresses of each dataset used to test the algorithms. 

Dataset Web Address (URL) 

Forest Fires http://archive.ics.uci.edu/ml/datasets/Forest+Fires 

Glass http://archive.ics.uci.edu/ml/datasets/Glass+Identification 

Parkinsons http://archive.ics.uci.edu/ml/datasets/Parkinsons 

SECOM http://archive.ics.uci.edu/ml/datasets/SECOM 

Seeds http://archive.ics.uci.edu/ml/datasets/seeds 

Semeion http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit 

Steel Plates http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults 

WI Breast Cancer 

(Original) 
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 

Wines 1 http://archive.ics.uci.edu/ml/datasets/Wine 

Wines 2 http://archive.ics.uci.edu/ml/datasets/Wine+Quality 

Iris http://archive.ics.uci.edu/ml/datasets/Iris 
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Figure AI01.  Dataset Forest Fires (Cortez & Morais, 2007) 

 -> Please make a selection (1-10) or (0): 1 
Getting eigenvalues of (517x13) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 4 principal components by 
Horn's test.  There are a total of 1 eigenvalues below Horn's 
curve and greater than K1.  These eigenvalues should be further 
evaluated against additional criteria for usefulness. 
(Additional criteria == qualitative and quantitative    
aspects of the study that are particular to a dataset,  
purpose of the study, and analyst selection.)   
 
-->Component #: 5  Eigenvalue: 1.0637 <-- 
 
Proportion of total variance explained by Horn's = 58.11%. 
Additional proportion of total variance explained by the 
contested "between the curves" components: 8.18%. 
If 1 contested components are included, proportion = 66.29%. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS ForestFires   
 
End of processing. 
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Figure AI02.  Dataset Glass (Frank & Asuncion, 2010) 

 -> Please make a selection (1-10) or (0): 5 
Getting eigenvalues of (210x7) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 2 principal components. 
Proportion of total variance explained = 88.98%. 
There are no contested components. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Seeds   
 
End of processing. 
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Figure AI03.  Dataset Parkinsons (Little, McSharry, Roberts, Costello, & Moroz, 2007) 

 -> Please make a selection (1-10) or (0): 3 
Getting eigenvalues of (195x24) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 4 principal components by 
Horn's test.  There are a total of 1 eigenvalues below Horn's 
curve and greater than K1.  These eigenvalues should be further 
evaluated against additional criteria for usefulness. 
(Additional criteria == qualitative and quantitative    
aspects of the study that are particular to a dataset,  
purpose of the study, and analyst selection.)   
 
-->Component #: 5  Eigenvalue: 1.0657 <-- 
 
Proportion of total variance explained by Horn's = 78.73%. 
Additional proportion of total variance explained by the 
contested "between the curves" components: 4.44%. 
If 1 contested components are included, proportion = 83.17%. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Parkinsons   
 
End of processing. 
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Figure AI04. Dataset SECOM  (Frank & Asuncion, 2010) 

 -> Please make a selection (1-10) or (0): 3 
Getting eigenvalues of (195x24) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 4 principal components by 
Horn's test.  There are a total of 1 eigenvalues below Horn's 
curve and greater than K1.  These eigenvalues should be further 
evaluated against additional criteria for usefulness. 
(Additional criteria == qualitative and quantitative    
aspects of the study that are particular to a dataset,  
purpose of the study, and analyst selection.)   
 
-->Component #: 5  Eigenvalue: 1.0657 <-- 
 
Proportion of total variance explained by Horn's = 78.73%. 
Additional proportion of total variance explained by the 
contested "between the curves" components: 4.44%. 
If 1 contested components are included, proportion = 83.17%. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Parkinsons   
 
End of processing. 



 

103 

1
0
3
 

 

 

 

Figure AI05.  Dataset Seeds (Kulczycki, Kowalski, Lukasik, & Zak, 2012) (Charytanowicz & Niewczas, 2012) 

 -> Please make a selection (1-10) or (0): 5 
Getting eigenvalues of (210x7) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 2 principal components. 
Proportion of total variance explained = 88.98%. 
There are no contested components. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Seeds   
 
End of processing. 
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Figure AI06.  Dataset Semeion Handwritten Digit (Semeion Research Center for the Science of Communication, 2008) 

 -> Please make a selection (1-10) or (0): 6 
Getting eigenvalues of (1593x266) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 38 principal components by 
Horn's test.  There are a total of 15 eigenvalues below Horn's 
curve and greater than K1.  These eigenvalues should be further 
evaluated against additional criteria for usefulness. 
(Additional criteria == qualitative and quantitative    
aspects of the study that are particular to a dataset,  
purpose of the study, and analyst selection.)   
 
-->Component #: 39  Eigenvalue: 1.4770 <-- 
-->Component #: 40  Eigenvalue: 1.4516 <-- 
-->Component #: 41  Eigenvalue: 1.3701 <-- 
-->Component #: 42  Eigenvalue: 1.3398 <-- 
-->Component #: 43  Eigenvalue: 1.3192 <-- 
-->Component #: 44  Eigenvalue: 1.2618 <-- 
-->Component #: 45  Eigenvalue: 1.2463 <-- 
-->Component #: 46  Eigenvalue: 1.1977 <-- 
-->Component #: 47  Eigenvalue: 1.1289 <-- 
-->Component #: 48  Eigenvalue: 1.1103 <-- 
-->Component #: 49  Eigenvalue: 1.0926 <-- 
-->Component #: 50  Eigenvalue: 1.0761 <-- 
-->Component #: 51  Eigenvalue: 1.0497 <-- 
-->Component #: 52  Eigenvalue: 1.0218 <-- 
-->Component #: 53  Eigenvalue: 1.0073 <-- 
 
Proportion of total variance explained by Horn's = 70.17%. 
Additional proportion of total variance explained by the 
contested "between the curves" components: 6.82%. 
If 15 contested components are included, proportion = 76.99%. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Semeion   
 
End of processing. 
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Figure AI07.  Dataset Steel Plates Faults (Semeion Research Center for the Science of Communication, 2010) 

 -> Please make a selection (1-10) or (0): 7 
Getting eigenvalues of (1941x25) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 6 principal components by 
Horn's test.  There are a total of 1 eigenvalues below Horn's 
curve and greater than K1.  These eigenvalues should be further 
evaluated against additional criteria for usefulness. 
(Additional criteria == qualitative and quantitative    
aspects of the study that are particular to a dataset,  
purpose of the study, and analyst selection.)   
 
-->Component #: 7  Eigenvalue: 1.0076 <-- 
 
Proportion of total variance explained by Horn's = 77.74%. 
Additional proportion of total variance explained by the 
contested "between the curves" components: 4.03%. 
If 1 contested components are included, proportion = 81.77%. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS SteelPlates   
 
End of processing. 
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Figure AI08.  Dataset Wisconsin Breast Cancer Study (Original) (Wolberg & Mangasarian, 1990) (Wolberg W. H., 1992) 

 -> Please make a selection (1-10) or (0): 8 
Getting eigenvalues of (699x9) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 1 principal components. 
Proportion of total variance explained = 67.52%. 
There are no contested components. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS WIBreastCancer   
 
End of processing. 
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Figure AI09.  Dataset Wines (Frank & Asuncion, 2010) 

 -> Please make a selection (1-10) or (0): 10 
Getting eigenvalues of (1599x11) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 4 principal components. 
Proportion of total variance explained = 70.81%. 
There are no contested components. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Wines2   
 
End of processing. 
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Figure AI10.  Dataset Wine Quality (Cortez, Cerdeira, Almeida, Matos, & Reis, 2009) 

 -> Please make a selection (1-10) or (0): 10 
Getting eigenvalues of (1599x11) sampled data...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 4 principal components. 
Proportion of total variance explained = 70.81%. 
There are no contested components. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Wines2   
 
End of processing. 
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Figure AI11.  Dataset Iris (Frank & Asuncion, 2010) 

 -> Please make a selection (1-10) or (0): 0 
Please enter the filename (script assumes .mat) 
--> Iris 
The selected filename has data small enough for a direct 
calculation of Horn's curve. 
 
Getting eigenvalues of (150x4)...Done! 
Plotting all curves...Done! 
*************************** Summary ****************************** 
Dimensionality is estimated at 1 principal components. 
Proportion of total variance explained = 72.77%. 
There are no contested components. 
****************************************************************** 
THE FILENAME USED IN THIS ANALYSIS IS Iris   
 
End of processing. 
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Appendix II: MATLAB Scripts 

 

Main Script: HornsMethodRandomMEV.m 

 

%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

% 

%%Graph the eigenvalue curves for one coordinate pair.  This script 
%references a table of pre-determined, sorted mean eigenvalues and 
%then interpolates to trap the (p',n') pair in the information in the 
%table.  Various configurations that may be presented by a user to the 
%script are discussed below.  

% 

%initialize the workspace environment 
close all; clear all; clc 
%initialize global variables--they are in the datafile 
global tablex ssizep ssizen;    %these variables are global in nature 

  
load LookupTable.mat 

    
maxp = max(tablex(:,1));    %the largest variable value in the data 
minp = min(tablex(:,1));    %the smallest variable (a.o. 13 Jan minp=5) 
                            %PCA on less than 5 variables?!?   
maxn = max(tablex(:,2));    %largest # of observations in the mapped data 
minn = min(tablex(:,2));    %smallest # of obs in the mapped data 
cr = sprintf('\n');         %carriage return variable; use with 'disp' 
% 
%display opening message 
disp(['This script will find Horn''s Curve as described by Monte  ' cr... 
      'Carlo simulation generated and sorted mean eigenvalues.    ' cr... 
      'This version evaluates random data of selected (p'',n'').  ' cr... 
      'For use with actual, real world datasets, see script       ' cr... 
      'HornsMethodSampled.']); cr; 
disp(['The input values must be within these ranges:              ' cr... 
      '                                                           ' ]); 
fprintf('  # of variables (p)    --> {%d,%d} \n',minp,maxp) 
fprintf('  # of observations (n) --> {%d,%d} \n',minn,maxn) 
disp(['                                                           ' cr... 
      'Also, make sure p is not less than n. ']); cr; cr; 

  
%***check for input violations (out of range on p or n and n < p)*** 
%set datavalid flag to 'false'.  Assume the following: 
paramvalid = false;     %valid input relation for p to n hasn't been rec'd 
pvalid = false;         %valid variable input has not been entered 
nvalid = false;         %valid observations input has not been entered 
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% 
while paramvalid == false   %assume invalid parameters (relation of p,n) 
    while pvalid == false   %assume invalid p value (relation to tablex) 
        fprintf('Which variable (p) to graph?\n') 
        getp = input('--> ');   %the variable of interest (pprime) 
        if getp < minp || getp > maxp;  %check variables 
            fprintf('-->Check (p). Selection is out of range.\n') 
        elseif getp >= minp && getp <= maxp 
            pvalid = true; 
        end 
    end 
    % 
    while nvalid == false   %assume invalid n value (relation to tablex) 
        fprintf('How many observations (n)?\n') 
        getn = input('--> ');   %the observations of interest (nprime) 
        if getn < minn || getn > maxn;  %check variables 
            fprintf('-->Check (n). Selection is out of range.\n') 
        elseif getn >= minn && getn <= maxn 
            nvalid = true; 
        end 
    end 
    % 
    if getp > getn;     %check n and p relation 
        disp(['***There are more variables (p) than observations (n)' cr... 
              'in this selection.  The lookup table is constrained  ' cr... 
              'to no less than p = n.  Press ''ctrl''+''pause/break''' cr... 
              'if you need to stop this script.***']); cr; cr; 
        pvalid = false;     %give user a chance to reenter p 
        nvalid = false;     %give user a chance to reenter n 
    elseif getp <= getn     %&& pvalid == 1 && nvalid == 1 
        paramvalid = true;  %good input parameters to the lookup table;  
    end                     %exit input error checking 
end 
% 
%************************************************************************** 
%**********************MATLAB variables usage****************************** 
%---NOTE: All code originally written in this script.  Most of the variable 
%referencing has been moved to functions that handle the scenarios listed 
%in the box below this one.------------------------------------------------ 
%'p' = "variable", 'n' = "observations", 'filename' = name of data file 
%(not the name of the data matrix which is always X, by my default) 
%'mev' = mean eigenvalue reference 
%'getp' = variable we're going to find (user-supplied); consider p-prime 
%'getn' = observations we're going to find (user-supplied); n-prime 
%row = where rows of variables and observations are found in the data 
%X = data matrix.  Lookup table reference tablex is a rename of X 
%S = child of X-->the nearest neighbors of variables.  Used inside fx. 
%Y = child of S-->the row entries of the nn observations on getn (in 
%fx) 
%'nn' --> "nearest neighbor" in all instances.   
%     --> adding 'u' = "upper", 'l' = "lower", or 'p' and 'n' (see above) 
%'ind' = "index" (of a row or column) 
%************************************************************************** 
%There are seven scenarios that (p',n') that can be presented: 
%1) p' not in table, n' not in table (both in range)-->interp p',n' 
%2) p' not in table, n' in table (both in range)-->interp p', use n 
%3) p' in table, n' not in table (both in range)-->use p, interp n' 
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%4) p' in table, n' in table (both in range)-->use p,n 
%5) p' out of range, n' in range-->data below diagonal (illegal combo) 
%6) p' in range, n' out of range-->largest recorded obs curve for interp p' 
%7) p' out of range, n' out of range-->provide largest obs for largest p 
%************************************************************************** 
%******look for the nearest neighbor VARIABLES in the lookup table********* 
[rp] = find(tablex(:,1)==getp);  %look for the input variable in the table; 
[curves,nnup,nnlp,nnun,nnln] = findcurves(getp,getn,minp,maxp,minn,maxn); 
%*********Call MCS on (p',n') as a proof-of-concept check*************** 
fprintf('Calling EigenMean for mean eigenvalues of (%d,%d)...',getp,getn) 
[mevvec] = EigenMean(getp,getn,100);    %mean eigenvalue vector for (p',n') 
                                        %mevvec is a matrix of row vectors 
fprintf('Done!\n') 
% 
%plot the variables 
fprintf('Plotting all curves...') 
%create some new variables to increase graphing readability 
minobs = nnln; 
maxobs = nnun; 
%set plot boundaries 
xmin = 0.8;                 %left bound for x-axis        
xmax = nnlp + 0.2;          %right bound for x-axis 
ymin = 0;                   %lower bound for y-axis  
ymax = curves(1,1);         %upper bound for y-axis; largest mean ev in data 
%************************set plot vectors********************************** 
%remaining variables have already been found; listed here for reference in 
%terms of graphing ease. Order is the highest plot to the lowest plot 
eind = size(curves,2);      %number of columns in the curve 
curve1 = curves(1,:);       %nnun mev's for nnup 
curve2 = curves(2,:);       %interpolated mev's for getn on nnun 
curve3 = curves(3,:);       %nnun mev's for nnlp 
curve4 = curves(4,:);       %interpolated mev's for getp 
curve5 = mevvec(1:eind);    %from the MCS run 
curve6 = curves(5,:);       %nnln mev's for nnlp 
curve7 = curves(6,:);       %interpolated mev's for getn on nnln 
curve8 = curves(7,:);       %nnun mev's for nnlp 
xx = 1:eind;                %x-values; common to all plots 
figure(1); box on; hold on; 
axis([xmin xmax ymin ymax + 0.5]); 
set(gca,'XTick',1:getp);    %display only integers on x axis 
% 
if getp > 30                %keep scaling under control 
    set(gca,'XTick',floor(linspace(1,nnlp,10))) 
end 
% 
plot(xx,curve1,'bs-','LineWidth',2)     %tabled mev's (nnup,nnln) 
plot(xx,curve2,'b:')                    %upper interp model 
plot(xx,curve3,'bo-','LineWidth',2)     %tabled mev's (nnup,nnun) 
plot(xx,curve6,'ks-','LineWidth',2)     %tabled mev's (nnlp,nnln) 
plot(xx,curve7,'k:')                    %lower interp model 
plot(xx,curve8,'ko-','LineWidth',2)     %tabled mev's (nnlp,nnun) 
plot(xx,curve4,'r:d')                   %Interpolated solution 
plot(xx,curve5,'r','LineWidth',2)       %Actual eigenmean solution 
% 
%(A) goes here if needed.  See bottom of script.  All plot lines above. 
line([xmin xmax],[1 1],'Color','k');    %Kaiser's criterion 
% 
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%chart details 
xlabel('Component(C_i)','FontSize',12) 
ylabel('$$\mathsf{\bar \lambda}$$',... 
    'interpreter','latex','fontsize',14) 
title(['MEV Interpolation at Point (',... 
        int2str(getp),',',int2str(getn),')'],'FontWeight','bold',... 
        'FontSize',12) 
%(B) goes here if needed.  See bottom of script.  Comment title above here.   
%(C) goes here if needed.  See bottom of script.     
%break  %uncomment if needed to run plain Horn's curve 
legend(... 
    ['Upper Nearest Neighbor  (',int2str(nnup),',',int2str(nnln),')'],... 
    ['Upper Interpolated Curve (',int2str(nnup),',',int2str(getn),')'],... 
    ['Upper Nearest Neighbor  (',int2str(nnup),',',int2str(nnun),')'],... 
    ['Lower Nearest Neighbor  (',int2str(nnlp),',',int2str(nnln),')'],... 
    ['Lower Interpolated Curve (',int2str(nnlp),',',int2str(getn),')'],... 
    ['Lower Nearest Neighbor  (',int2str(nnlp),',',int2str(nnun),')'],... 
    ['Interpolated Solution       (',int2str(getp),',',int2str(getn),')'],... 
    ['Horn''s Algorithm Soln     (',int2str(getp),',',int2str(getn),')'],... 
     'Location','NorthEast') 
hold off 
fprintf('Done!\n') 
fprintf('***End of processing.***\n\n') 
% 
%end of program 
%Extra stuff just to run a plain Horn's Curve 
%(A)plot(xx,curve4,'r','LineWidth',2)       %Interpolated solution 
%(B)title(['Random Data of Size (',... 
%       int2str(getn),'x',int2str(getp),')'],'FontWeight','bold',... 
%       'FontSize',12) 
%(C)legend('Horn''s Curve','Kaiser''s Criterion (K1)','Location','NorthEast')  
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Main Script: HornsMethodRandom2OM.m 

 

%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

% 

%Graph the eigenvalue curves for one coordinate pair.  This script 
%references a table of pre-determined, sorted mean eigenvalues and 
%then interpolates to trap the (p',n') pair in the information in the 
%table.  Various configurations that may be presented by a user to the 
%script are discussed below.  
%However, it differs from its ev_multiplots_MeanEV cousin in that it uses 
%the 2OM coefficients and not the mean eigenvalues for direct reference*** 
% 

%initialize the workspace 
close all; clear all; clc 
%initialize global variables--they are in the lookup table 
global tablexbeta ssizep ssizen;    %these variables are global in nature 

  
load LookupTableCoeffs.mat 

    
maxp = max(tablexbeta(:,1));    %the largest variable value in the data 
minp = min(tablexbeta(:,1));    %the smallest variable (a.o. 13 Jan minp=5) 
                                %PCA on less than 5 variables?!?   
maxn = max(tablexbeta(:,2));    %largest # of observations in the mapped data 
minn = min(tablexbeta(:,2));    %smallest # of obs in the mapped data 
cr = sprintf('\n');             %carriage return variable; use with 'disp' 
% 
%display opening message 
disp(['This script will find Horn''s Curve as described by the    ' cr... 
      'linear regression second-order model coefficients.         ' cr... 
      'This version evaluates random data of selected (p'',n'').  ' cr... 
      'For use with actual, real world datasets, see script       ' cr... 
      'HornsMethodSampled2OM.']); cr; 
disp(['The input values must be within these ranges:              ' cr... 
      '                                                           ' ]); 
fprintf('  # of variables (p)    --> {%d,%d} \n',minp,maxp) 
fprintf('  # of observations (n) --> {%d,%d} \n',minn,maxn) 
disp(['                                                           ' cr... 
      'Also, make sure p is not less than n. ']); cr; cr; 

  
%***check for input violations (out of range on p or n and n < p)*** 
%set datavalid flag to 'false'.  Assume the following: 
paramvalid = false;     %valid input relation for p to n hasn't been rec'd 
pvalid = false;         %valid variable input has not been entered 
nvalid = false;         %valid observations input has not been entered 
% 
while paramvalid == false   %assume invalid parameters (relation of p,n) 
    while pvalid == false   %assume invalid p value (relation to tablex) 
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        fprintf('Which variable (p) to graph?\n') 
        getp = input('--> ');   %the variable of interest (pprime) 
        if getp < minp || getp > maxp;  %check variables 
            fprintf('-->Check (p). Selection is out of range.\n') 
        elseif getp >= minp && getp <= maxp 
            pvalid = true; 
        end 
    end 
    % 
    while nvalid == false   %assume invalid n value (relation to tablex) 
        fprintf('How many observations (n)?\n') 
        getn = input('--> ');   %the observations of interest (nprime) 
        if getn < minn || getn > maxn;  %check variables 
            fprintf('-->Check (n). Selection is out of range.\n') 
        elseif getn >= minn && getn <= maxn 
            nvalid = true; 
        end 
    end 
    % 
    if getp > getn;     %check n and p relation 
        disp(['***There are more variables (p) than observations (n)' cr... 
              'in this selection.  The lookup table is constrained  ' cr... 
              'to no less than p = n.  Press ''ctrl''+''pause/break''' cr... 
              'if you need to stop this script.***']); cr; cr; 
        pvalid = false;     %give user a chance to reenter p 
        nvalid = false;     %give user a chance to reenter n 
    elseif getp <= getn %&& pvalid == 1 && nvalid == 1 
        paramvalid = true;  %good input parameters to the lookup table;  
    end                 %exit input error checking 
    % 
end 
% 
%************************************************************************** 
%**********************MATLAB variables usage****************************** 
%---NOTE: All code originally written in this script.  Most of the variable 
%referencing has been moved to functions that handle the scenarios listed 
%in the box below this one.------------------------------------------------ 
%'p' = "variable", 'n' = "observations", 'filename' = name of data file 
%(not the name of the data matrix which is always X, by my default) 
%'mev' = mean eigenvalue reference 
%'getp' = variable we're going to find (user-supplied); consider p-prime 
%'getn' = observations we're going to find (user-supplied); n-prime 
%row = where rows of variables and observations are found in the data 
%X = data matrix.  Lookup table reference tablex is a rename of X 
%S = child of X-->the nearest neighbors of variables.  Used inside fx. 
%Y = child of S-->the row entries of the nn observations on getn (in 
%fx) 
%'nn' --> "nearest neighbor" in all instances.   
%     --> adding 'u' = "upper", 'l' = "lower", or 'p' and 'n' (see above) 
%'ind' = "index" (of a row or column) 
%************************************************************************** 
%There are seven scenarios that (p',n') that can be presented: 
%1) p' not in table, n' not in table (both in range)-->interp p',n' 
%2) p' not in table, n' in table (both in range)-->interp p', use n 
%3) p' in table, n' not in table (both in range)-->use p, interp n' 
%4) p' in table, n' in table (both in range)-->use p,n 
%5) p' out of range, n' in range-->data below diagonal (illegal combo) 
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%6) p' in range, n' out of range-->largest recorded obs curve for interp p' 
%7) p' out of range, n' out of range-->provide largest obs for largest p 
%************************************************************************** 
%******look for the nearest neighbor VARIABLES in the lookup table********* 
[rp] = find(tablexbeta(:,1)==getp);  %look for the input variable in the 

table; 
%mevsolnone is the function "(m)ean (e)igen(v)alue (sol)utio(n) (one)" 
%it does all the work for nearest neighbors in variables and observations 
[curves,nnup,nnlp,nnun,nnln] = findcurves2OM(getp,getn,minp,maxp,minn,maxn); 
%*********Call MCS on (p',n') as a proof-of-concept check*************** 
fprintf('Calling EigenMean for mean eigenvalues of (%d,%d)...',getp,getn) 
[mevvec] = EigenMean(getp,getn,100);    %mean eigenvalue vector for (p',n') 
                                        %mevvec is a matrix of row vectors 
fprintf('Done!\n') 
% 
%plot the variables 
fprintf('Plotting all curves...') 
%set plot boundaries 
xmin = 0.8;                 %left bound for x-axis        
xmax = getp + 0.2;          %right bound for x-axis 
ymin = 0;                   %lower bound for y-axis  
ymax = curves(1,1);         %upper bound for y-axis; largest mean ev in data 
%************************set plot vectors********************************** 
%remaining variables have already been found; listed here for reference in 
%terms of graphing ease. Order is the highest plot to the lowest plot 

%plotting values are returned in curves matrix-->includes polyval, polyfit 
eind = size(curves,2);      %number of columns in the curve 
curve1 = curves(1,:);       %nnun mev's for nnup 
curve2 = curves(2,:);       %interpolated mev's for getn on nnun 
curve3 = curves(3,:);       %nnun mev's for nnlp 
curve4 = curves(4,:);       %interpolated mev's for getp 
curve5 = mevvec(1:eind);    %from the MCS run--yes, mean b/c random data 
curve6 = curves(5,:);       %nnln mev's for nnlp 
curve7 = curves(6,:);       %interpolated mev's for getn on nnln 
curve8 = curves(7,:);       %nnun mev's for nnlp 
xx = 1:eind;                %x-values; common to all plots 
figure(1); box on; hold on; 
axis([xmin xmax ymin ymax + 0.5]); 
set(gca,'XTick',1:getp);    %display only integers on x axis 
% 
if getp > 30                %keep scaling under control 
    set(gca,'XTick',floor(linspace(1,nnlp,10))) 
end 
% 
plot(xx,curve1,'bs-','LineWidth',2)     %tabled mev's (nnup,nnln) 
plot(xx,curve2,'b:')                    %upper interp model 
plot(xx,curve3,'bo-','LineWidth',2)     %tabled mev's (nnup,nnun) 
plot(xx,curve6,'ks-','LineWidth',2)     %tabled mev's (nnlp,nnln) 
plot(xx,curve7,'k:')                    %lower interp model 
plot(xx,curve8,'ko-','LineWidth',2)     %tabled mev's (nnlp,nnun) 
plot(xx,curve4,'r:d')                   %Interpolated solution 
plot(xx,curve5,'r','LineWidth',2)       %Actual eigenmean solution 
% 
line([xmin xmax],[1 1],'Color','k');    %Kaiser's criterion 
% 
%chart details 
xlabel('Component (C_i)','FontSize',12) 
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ylabel('$$\mathsf{\hat \lambda}$$',... 
    'interpreter','latex','fontsize',14) 
title(['2OM Interpolation of Point (',int2str(getp),',',int2str(getn),... 
       ')'],'FontWeight','bold','FontSize',12) 
legend(... 
    ['Upper Nearest Neighbor  (',int2str(nnup),',',int2str(nnln),')'],... 
    ['Upper Interpolated Curve (',int2str(nnup),',',int2str(getn),')'],... 
    ['Upper Nearest Neighbor  (',int2str(nnup),',',int2str(nnun),')'],... 
    ['Lower Nearest Neighbor  (',int2str(nnlp),',',int2str(nnln),')'],... 
    ['Lower Interpolated Curve (',int2str(nnlp),',',int2str(getn),')'],... 
    ['Lower Nearest Neighbor  (',int2str(nnlp),',',int2str(nnun),')'],... 
    ['Interpolated Solution       (',int2str(getp),',',int2str(getn),')'],... 
    ['Horn''s Algorithm Soln     (',int2str(getp),',',int2str(getn),')'],... 
     'Location','NorthEast') 
hold off  
fprintf('Done!\n') 
fprintf('***End of processing.***\n\n') 
% 
%end of program 
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Main Script: HornsMethodSampledMEV.m 

 

%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

% 

%Graph the eigenvalue curves for a sampled (real-world) dataset.  
%This script references a table of pre-determined, sorted mean eigenvalues  
%and then interpolates to trap the (p',n') pair in the information in the 
%table.  Various configurations that may be presented by a user to the 
%script are discussed below.  
% 
%initialize the workspace  
close all; clear all; clc 
%initialize global variables--they are in the lookup table 
global tablex ssizep ssizen;    %these variables are global in nature 
% 
%load the lookup table.  Do not confuse with a sample dataset!!!   
%Format expected by the program is [p n meaneigenvalues] where  
%-->p = # variables => sorted descending; 
%-->n = # observations => sorted ascending; 
%-->meaneigenvalues = data elements => sorted descending from EigenMean 
load LookupTable.mat 
% 
%initialize local variables 
validdata = false;          %flag to stay in the input loop    
smallsamp = false;          %data is 2-4 variables & can be direct calc'd 
maxp = max(tablex(:,1));    %the largest variable value in the data 
minp = min(tablex(:,1));    %the smallest variable (a.o. 13 Jan minp=5) 
                            %PCA on less than 5 variables?!?   
maxn = max(tablex(:,2));    %largest # of observations in the mapped data 
minn = min(tablex(:,2));    %smallest # of obs in the mapped data 
cr = sprintf('\n');         %carriage return variable; use with 'disp' 
% 
%display opening message 
disp(['This script will find Horn''s Curve to aid in making a       ' cr... 
      'Principal Components Analysis (PCA) dimensionality deter-    ' cr... 
      'mination for an actual--sampled--data set.  Horn''s Curve    ' cr... 
      'is found by interpolating known, "ideal" data of size        ' cr... 
      'equivalent to the actual sample size.  Constraints regard-   ' cr... 
      'ing input and what the script can do are listed below.      ']); cr; 
disp(['The input values must be within these ranges:                ' cr... 
      '                                                            ']); cr; 
fprintf('  # of variables (p)    --> {%d,%d} \n',minp,maxp) 
fprintf('  # of observations (n) --> {%d,%d} \n',minn,maxn) 
disp(['                                                             ' cr... 
      'A crucial condition to consider is underdetermined data; that' cr... 
      'is, data having fewer observations n than features p.  PCA of' cr... 
      'underdetermined data is possible; however, this script does  ' cr... 
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      'not accept such datasets.                                    ' cr... 
      '                                                             ' cr... 
      'Please choose a dataset to load.  Type the number and press  ' cr... 
      '''Enter.''  If the dataset is not listed, choose ''0'' (zero)' cr... 
      'and type in the filename.                                    ' cr... 
      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 

cr... 
      '(1)  Forest Fires                                            ' cr...   
      '(2)  Glass                                                   ' cr... 
      '(3)  Parkinsons                                              ' cr... 
      '(4)  SECOM                                                   ' cr... 
      '(5)  Seeds                                                   ' cr... 
      '(6)  Semeion Handwriting Characters                          ' cr... 
      '(7)  Steel Plates                                            ' cr... 
      '(8)  Wisconsin Breast Cancer Study                           ' cr... 
      '(9)  Wines (Set 1)                                           ' cr... 
      '(10) Wines (Set 2)                                           ' cr... 
      '..................................................................' 

cr... 
      '(0)  Manually enter a filename                               ' cr... 
      

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~']);cr; 
while validdata == false; 
    sel = input('-> Please make a selection (1-10) or (0): '); 
    %find out which dataset to load based upon user's selection 
    switch sel 
        case 1 
            filename = 'ForestFires'; 
        case 2 
            filename = 'Glass'; 
        case 3 
            filename = 'Parkinsons'; 
        case 4 
            filename = 'SECOM'; 
        case 5 
            filename = 'Seeds'; 
        case 6 
            filename = 'Semeion'; 
        case 7 
            filename = 'SteelPlates'; 
        case 8 
            filename = 'WIBreastCancer'; 
        case 9 
            filename = 'Wines1'; 
        case 10 
            filename = 'Wines2'; 
        otherwise 
            fprintf('Please enter the filename (script assumes .mat)\n') 
            filename = input('--> ','s'); 
    end 
    load(filename,'-mat');  %the datafile to load 
    [getn,getp] = size(X);  %size of the data 
    %check for all the conditions of X (min size, max size, n>p) 
    if getn >= minn && getn <= maxn && getp >= minp && getp <= maxp 
        validdata = true;   %binary that data is valid for processing 
    elseif getp > 1 && getp < 5 
        validdata = true;   %binary that data is valid for processing 
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        smallsamp = true;   %binary that direct computation is valid 
        fprintf('The selected filename has data small enough for a direct\n') 
        fprintf('calculation of Horn''s curve.\n\n') 
    else 
        fprintf('The sample data is size %d x %d (obs x var).\n',getn,getp) 
        fprintf('The lookup table is (%d to %d) observations and 

\n',minn,maxn) 
        fprintf('(%d to %d) variables.  Please make another 

selection.\n\n',minp,maxp) 
    end 

     
    if getp > getn;     %check n and p relation--no underdetermined sets! 
        disp(['***There are more variables (p) than observations (n)' cr... 
            'in this data.  The lookup table is constrained to no ' cr... 
            'less than p = n.  Press ''ctrl''+''pause/break''' cr... 
            'to stop this script.***']); cr; cr; 
        validdata = false; 
    end 
end 
% 
%call the interpolating function for p >= 5 
%************************************************************************** 
if smallsamp == false;              %skip interpolation for small data 
    [curves,nnup,nnlp,nnun,nnln]=findcurves(getp,getn,minp,maxp,minn,maxn); 
else 
    ssev = EigenMean(getn,getp,100);%small sample eigenvalues 
    curves = zeros(7,getp); 
    nnlp = getp; 
    nnup = getp; 
    nnln = getn; 
    nnun = getn; 
end 
%*************************Get sorted eigenvalues of X********************** 
fprintf('Getting eigenvalues of (%dx%d)...',getn,getp) 
R = corr(X);                    %X is the data matrix 
[V,D] = eig(R);                 %Don't need V eigenvectors (use for loads);  
                                %do need D eigenvalues 
sev = sort(diag(D),'descend')'; %'sev'=sampled data eigenvalues 
fprintf('Done!\n') 
%************************************************************************** 
%plot the variables 
fprintf('Plotting all curves...') 
%create some new variables to increase graphing readability 
eind = size(curves,2);  %number of columns in the curve 
esev = size(sev,2);     %want to show all the eigenvalues 
%set plot boundaries 
xmin = 0.8;             %left bound for x-axis        
xmax = esev + 0.2;      %right bound for x-axis 
ymin = 0;               %lower bound for y-axis  
ymax = sev(1) + 0.5;    %upper bound for y-axis; largest ev in data 
%find out where the two lines (interpolated and actual) cross; this is the 
%entire utility of Horn's Curve in a nutshell 
%************************set plot vectors********************************** 
%remaining variables have already been found; listed here for reference in 
%terms of graphing ease. Order is the highest plot to the lowest plot 
%what's the case with Horn's curve?  Small dataset = special situation. 

%Note: 'curves' gets returned with all nearest neighbor & surrogate curves 
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if smallsamp == false 
    curve4=curves(4,:); %interp sev's for getp 
else 
    curve4=ssev;        %small sample eigenvalues 
end 
xx = 1:eind;            %x-values; common to all interpolated curves 
screeX = 1:esev;        %vector of indices in sampled data eigenvalue 
screeY = sev;           %sampled data eigenvalues 
d1 = length(curve4);    %length of curve4 
screeRX = zeros(1,d1);  %preallocate the vector.   
screeRY = zeros(1,d1);  %eigenvalues that would be discarded by Horn's Test 
count = 1;              %reset counter in outer loop 
qcount = 1;             %reset counter for inner loop 
qflag = false;          %was a contested (for dimen.) eigenvalue found? 
%get the eigenvalues that Horn's test indicates are less than the dim. 
%they will be colored gray in the plot 
for i=1:d1 
    if (curve4(i) > sev(i));    %ck for point above Horn's curve 
        screeRX(count) = i; 
        screeRY(count) = sev(i); 
        count = count + 1; 
        %check to see if a point less than Horn's curve is > 1.  These are 
        %eigenvalues that we would keep just by using Kaiser's criterion 
        if sev(i) > 1 
            qflag = true;    
            qx(1,qcount) = i; 
            qy(1,qcount) = sev(i); 
            qcount = qcount + 1; 
            %next 8 lines summarize for the screen.  Will only show if this 

sub 
            %is run. 
            pctvar2 = sum((qy)/getp)*100; 
            cpc = length(qx);               %# of contested prin components 
        end 
    end 
end 
%clear up extra zeros in screeRX, screeRY 
%if the input variable getp is a tabled value, there is nothing left to add 
%and the remaining zeros in the array should be truncated. 
%otherwise (at the 'else') reindex the array and count-in the smallest 
%eigenvalues of sev that extend beyond the length of curve4.  The smallest 
%eigenvalues will be plotted but colored so that it's obvious they are not 
%considered significant to PCA. 
if nnlp == nnup             %getp is a direct match in the table 
    [rt] = find(screeRX == 0); 
    screeRX(rt) = [];       %truncate trailing zeros 
    screeRY(rt) = [];       %truncate trailing zeros 
else 
    d2 = screeRX(1):getp;    
    screeRX = d2;           %need the integers from the first cutoff eigen- 
    screeRY = sev(d2);      %value to the total number in sev 
end 
% 
%Capture the PC and pct variance for Horn's 
pchorns = length(screeX)-length(screeRX);   %find the #ev's above the curve 
pctvar1 = sum((screeY(1:pchorns))/getp)*100; 
% 
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figure(1); box on; hold on; 
set(gca,'XTick',1:getp);    %display only integers on x axis 
% 
if getp > 30                %keep scaling under control 
    set(gca,'XTick',floor(linspace(1,nnlp,10))) 
    xmin = 0;             %large values--give some more whitespace 
    xmax = getp+getp*0.02; % 
end 
axis([xmin xmax ymin ymax]); 
% 
%uncomment these boxes to see where the tabled & interpolated curves are 
%doing so will royally mess up the legend entries--therefore not 
%recommended for 'long term' use 
%plot(xx,curve1,'bs-','LineWidth',2)    %tabled sev's (nnup,nnln) 
%plot(xx,curve2,'b:')                   %upper interp model 
%plot(xx,curve3,'bo-','LineWidth',2)    %tabled sev's (nnup,nnun) 
%plot(xx,curve6,'rs-','LineWidth',2)    %tabled sev's (nnlp,nnln) 
%plot(xx,curve7,'r:')                   %lower interp model 
%plot(xx,curve8,'ro-','LineWidth',2)    %tabled sev's (nnlp,nnun) 
%plot(screeX,screeY,'b','LineWidth',2); %sampled data scree line (A) 
plot(screeX,screeY,'b','LineWidth',2);  %sampled data scree line 
plot(xx,curve4,'r','LineWidth',2)       %Interpolated Horn's Curve soln 
line([xmin xmax],[1 1],'Color','k');    %Kaiser's criterion 
%scatter(screeX,screeY,64,[1 0.5 0.3],'filled','MarkerEdgeColor','k');(B) 
%this line above has good scatterplot color; looking for green, though 
scatter(screeX,screeY,64,[0 0.9 0.2],'filled','MarkerEdgeColor','k'); 
scatter(screeRX,screeRY,64,[0.9 0.9 0.9],'filled','MarkerEdgeColor','k'); 
if qflag == true   %contested eigenvalues betw. Horn's & K1.  Display in red 
    scatter(qx,qy,64,[1 0 0],'filled','MarkerEdgeColor','k'); 
end 
% 
%chart details 
xlabel('Component (C_i)','FontSize',12) 
ylabel('Eigenvalue ( \lambda)','FontSize',12) 
%ylabel('\lambda','FontSize',12) 
legend('Scree Line','Horn''s Curve','Kaiser''s Criterion (K1)',... 
       'Location','NorthEast')  
%title('Sampled Data of Size (517x13)','FontSize',12,'FontWeight','bold') 
title(['sev Interpolated Solution of Dataset "',filename,... 
       '" (',int2str(getn),'x',int2str(getp),')'],... 
       'FontWeight','bold','FontSize',12) 
%break;          %(D)uncomment if running plain curve 
if qflag == true;   %choose the correct legend; did we contest components? 
                    %if qflag = 1, then yes there is something here 
    legend('Scree Line','Horn''s Curve',... 
        'Kaiser''s Criterion (K1) = 1.0',... 
       ['\bf',int2str(pchorns),' \rm \lambda > Horn''s Curve > K1'],... 
       ['\bf',int2str(getp-pchorns-cpc),... 
        ' \rm \lambda < Horn''s Curve < K1'],... 
       ['\bf',int2str(cpc),' \rm K1 < \lambda < Horn''s Curve'],... 
       'Location','NorthEast') 
elseif qflag == false;  %no contested points--both tests are in agreement 
    legend('Scree Line','Horn''s Curve',... 
           'Kaiser''s Criterion (K1) = 1.0',... 
          ['\bf',int2str(pchorns),... 
           ' \rm \lambda > Horn''s Curve > K1'],... 
          ['\bf',int2str(getp-pchorns),... 
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           ' \rm \lambda < Horn''s Curve < K1'],... 
       'Location','NorthEast') 
end 
hold off 
fprintf('Done!\n') 
% 
%send summary to the screen 
disp('*************************** Summary ******************************'); 

cr; 
if qcount > 1;  %qcount = #of contested eigenvalues for dimensionality 
                %because qcount is also a loop marker, #ev's = val -1 
    fprintf('Dimensionality is estimated at %d principal components 

by\n',pchorns) 
    fprintf('Horn''s test.  There are a total of %d eigenvalues below 

Horn''s\n',cpc) 
    disp(['curve and greater than K1.  These eigenvalues should be further' 

cr... 
          'evaluated against additional criteria for usefulness.' cr... 
          '(Additional criteria == qualitative and quantitative   ' cr... 
          'aspects of the study that are particular to a dataset, ' cr... 
          'purpose of the study, and analyst selection.)  ']);cr; 
    fprintf('\n') 
    fprintf('-->Component #: %d  Eigenvalue: %2.4f <--\n',[qx; qy]); 
    fprintf('\n') 
    fprintf('Proportion of total variance explained by Horn''s = 

%2.2f%%.\n',pctvar1); 
    fprintf('Additional proportion of total variance explained by the\n') 
    fprintf('contested "between the curves" components: %2.2f%%.\n',pctvar2) 
    fprintf('If %d contested components are included, proportion = 

%2.2f%%.\n',cpc,pctvar1+pctvar2) 
else 
    fprintf('Dimensionality is estimated at %d principal 

components.\n',pchorns) 
    fprintf('Proportion of total variance explained = %2.2f%%.\n',pctvar1) 
    fprintf('There are no contested components.\n') 
end 
disp('******************************************************************');  
fprintf('THE FILENAME USED IN THIS ANALYSIS IS %s  \n',filename) 
fprintf('\nEnd of processing.\n\n') 
% 
%end of script 
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Main Script: HornsMethodSampled2OM.m 

 

%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

% 

%Graph the eigenvalue curves for a sampled (real-world) dataset.  
%This script references a table of pre-determined, sorted mean eigenvalues  
%and then interpolates to trap the (p',n') pair in the information in the 
%table.  Various configurations that may be presented by a user to the 
%script are discussed below.  
% 

%initialize the workspace  
close all; clear all; clc 
%initialize global variables--they are in the lookup table 
global tablexbeta ssizep ssizen;    %these variables are global in nature 
% 
%load the lookup table.  Do not confuse with a sample dataset X!!!   
%Format expected by the program is tablexbeta = [p n b2 b1 b0] where  
%-->p = # variables => sorted descending; 
%-->n = # observations => sorted ascending; 
%-->{b2 b1 b0} = data elements => coefficients from the lookup table 
load LookupTableCoeffs.mat 
% 
%initialize local variables 
validdata = false;              %boolean flag to stay in the input loop    
smallsamp = false;              %data is 2-4 variables & can be direct calc'd 
maxp = max(tablexbeta(:,1));    %the largest variable value in the data 
minp = min(tablexbeta(:,1));    %the smallest variable (a.o. 13 Jan minp=5) 
                                %PCA on less than 5 variables?!?   
maxn = max(tablexbeta(:,2));    %largest # of observations in the mapped data 
minn = min(tablexbeta(:,2));    %smallest # of obs in the mapped data 
cr = sprintf('\n');             %carriage return variable; use with 'disp' 
% 
%display opening message 
disp(['This script will find Horn''s Curve to aid in making a       ' cr... 
      'Principal Components Analysis (PCA) dimensionality deter-    ' cr... 
      'mination for an actual--sampled--data set.  Horn''s Curve    ' cr... 
      'is found by interpolating known, "ideal" data of size        ' cr... 
      'equivalent to the actual sample size.  Constraints regard-   ' cr... 
      'ing input and what the script can do are listed below.      ']); cr; 
disp(['The input values must be within these ranges:                ' cr... 
      '                                                            ']); cr; 
fprintf('  # of variables (p)    --> {%d,%d} \n',minp,maxp) 
fprintf('  # of observations (n) --> {%d,%d} \n',minn,maxn) 
disp(['                                                             ' cr... 
      'A crucial condition to consider is underdetermined data; that' cr... 
      'is, data having fewer instances n than features p.  PCA of   ' cr... 
      'underdetermined data is possible; however, this script does  ' cr... 
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      'not accept such datasets.                                    ' cr... 
      '                                                             ' cr... 
      'Please choose a dataset to load.  Type the number and press  ' cr... 
      '''Enter.''  If the dataset is not listed, choose ''0'' (zero)' cr... 
      'and type in the filename.                                    ' cr... 
      '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 

cr... 
      '(1)  Forest Fires                                            ' cr...   
      '(2)  Glass                                                   ' cr... 
      '(3)  Parkinsons                                              ' cr... 
      '(4)  SECOM                                                   ' cr... 
      '(5)  Seeds                                                   ' cr... 
      '(6)  Semeion Handwriting Characters                          ' cr... 
      '(7)  Steel Plates                                            ' cr... 
      '(8)  Wisconsin Breast Cancer Study                           ' cr... 
      '(9)  Wines (Set 1)                                           ' cr... 
      '(10) Wines (Set 2)                                           ' cr... 
      '..................................................................' 

cr... 
      '(0)  Manually enter a filename                               ' cr... 
      

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~']);cr; 
while validdata == false; 
    sel = input('-> Please make a selection (1-10) or (0): '); 
    %find out which dataset to load based upon user's selection 
    switch sel 
        case 1 
            filename = 'ForestFires'; 
        case 2 
            filename = 'Glass'; 
        case 3 
            filename = 'Parkinsons'; 
        case 4 
            filename = 'SECOM'; 
        case 5 
            filename = 'Seeds'; 
        case 6 
            filename = 'Semeion'; 
        case 7 
            filename = 'SteelPlates'; 
        case 8 
            filename = 'WIBreastCancer'; 
        case 9 
            filename = 'Wines1'; 
        case 10 
            filename = 'Wines2'; 
        otherwise 
            fprintf('Please enter the filename (script assumes .mat)\n') 
            filename = input('--> ','s'); 
    end 
    load(filename,'-mat');  %the datafile to load 
    [getn,getp] = size(X);  %size of the data 
    %check for all the conditions of X (min size, max size, n>p) 
    if getn >= minn && getn <= maxn && getp >= minp && getp <= maxp 
        validdata = true; 
    elseif getp > 1 && getp < 5 
        validdata = true;   %binary that data is valid for processing 
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        smallsamp = true;   %binary that direct computation is valid 
        fprintf('The selected filename has data small enough for a direct\n') 
        fprintf('calculation of Horn''s curve.\n\n') 
    else 
        fprintf('The sample data is size %d x %d (obs x var).\n',getn,getp) 
        fprintf('The lookup table is (%d to %d) observations and 

\n',minn,maxn) 
        fprintf('(%d to %d) variables.  Please make another 

selection.\n\n',minp,maxp) 
    end 

     
    if getp > getn;     %check n and p relation 
        disp(['***There are more variables (p) than observations (n)' cr... 
            'in this data.  The lookup table is constrained to no ' cr... 
            'less than p = n.  Press ''ctrl''+''pause/break''' cr... 
            'to stop this script.***']); cr; cr; 
        validdata = false; 
    end 
end 
% 
%call the interpolating function 
%************************************************************************** 
if smallsamp == false;               %skip interpolation for small data 
  [curves,nnup,nnlp,nnun,nnln]=findcurves2OM(getp,getn,minp,maxp,minn,maxn); 
else 
   ssev = EigenMean(getn,getp,100);  %small sample eigenvalues 
   curves = zeros(7,getp); 
   nnlp = getp; 
   nnup = getp; 
   nnln = getn; 
   nnun = getn; 
end  
%*************************Get sorted eigenvalues of X********************** 
fprintf('Getting eigenvalues of (%dx%d) sampled data...',getn,getp) 
R = corr(X);                    %X is the data matrix 
[V,D] = eig(R);                 %Don't need Vy eigenvectors;  
                                %do need Dy eigenvalues 
screeY = sort(diag(D),'descend')'; 
fprintf('Done!\n') 
%************************************************************************** 
%plot the variables 
fprintf('Plotting all curves...') 
%create some new variables to increase graphing readability 
cols = size(curves,2);      %number of columns in the curve 
screeX = 1:cols;            %vector of indices in sampled data eigenvalue 
%set plot boundaries 
xmin = 0.8;                 %left bound for x-axis        
xmax = cols + 0.2;          %right bound for x-axis 
ymin = 0;                   %lower bound for y-axis  
ymax = screeY(1) + 0.5;     %upper bound for y-axis; largest ev in data 
%find out where the two lines (interpolated and actual) cross; this is the 
%entire utility of Horn's Curve in a nutshell 
%************************set plot vectors********************************** 
%Note: 'curves' returns all NN and surrogate curves; only 'curve4' needed 
%what's the case with Horn's curve?  Small dataset = special situation 
if smallsamp == false 
    curve4=curves(4,:);     %interp betas for getp 
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else 
    curve4=ssev;            %small sample eigenvalues 
end 
d1 = length(curve4);        %length of curve4--the est. Horn's curve 
screeRX = zeros(1,d1);      %preallocate the vector.   
screeRY = zeros(1,d1);      %eigenvalues that would be discarded by Horn's 
count = 1;                  %reset counter in outer loop 
qcount = 1;                 %reset counter for inner loop 
qflag = 0;                  %was a contested (for dimen.) eigenvalue found? 
for i=1:d1 
    if curve4(i) > screeY(i)   %screeY is the curve of sampled eigenvalues 
        screeRX(count) = i; 
        screeRY(count) = screeY(i); 
        count = count + 1; 
        %check to see if a point less than Horn's curve is > 1.  These are 
        %eigenvalues that we would keep just by using Kaiser's criterion 
        if screeY(i) > 1 
            qflag = 1; 
            qx(1,qcount) = i; 
            qy(1,qcount) = screeY(i); 
            qcount = qcount + 1; 
            pctvar2 = sum((qy)/getp)*100; 
            cpc = length(qx);   %# of contested prin components 
        end 
    end 
end 

  
d2 = screeRX(1):getp;    
screeRX = d2;               %need the integers from the first cutoff eigen- 
screeRY = screeY(d2);       %value to the total number in mev 
%so how did the PC dimensionality estimate go?  Capture the PC for Horn's 
pchorns = length(screeX)-length(screeRX);   %find the #ev's above the curve 
pctvar1 = sum((screeY(1:pchorns))/getp)*100; 
%.......................................................................... 
figure(1); box on; hold on; 
set(gca,'XTick',1:getp);    %display only integers on x axis 
% 
if getp > 30                %keep scaling under control 
    set(gca,'XTick',floor(linspace(1,nnlp,10))) 
    xmin = 0;               %large values--give some more whitespace 
    xmax = getp+getp*0.02;  % 
end 
axis([xmin xmax ymin ymax]); 
plot(screeX,screeY,'b','LineWidth',2)   %Scree line 
plot(screeX,curve4,'r','LineWidth',2)   %Interpolated Horn's Curve soln 
line([xmin xmax],[1 1],'Color','k')     %Kaiser's criterion 
scatter(screeX,screeY,64,[0 0.9 0.2],'filled','MarkerEdgeColor','k'); 
scatter(screeRX,screeRY,64,[0.9 0.9 0.9],'filled','MarkerEdgeColor','k'); 
if qflag == true;   %contested eigenvalues betw. Horn's & K1.  Display in red 
    scatter(qx,qy,64,[1 0 0],'filled','MarkerEdgeColor','k'); 
end 
%chart details 
xlabel('Component (C_i)','FontSize',12) 
ylabel('Eigenvalue ( \lambda)','FontSize',12) 
title(['2OM Interpolated Solution of Dataset "',filename,... 
       '" (',int2str(getn),'x',int2str(getp),')'],... 
       'FontWeight','bold','FontSize',12) 
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if qflag == true;   %choose the correct legend; did we contest components? 
                    %if true, then yes there is something here 
    legend('Scree Line','Horn''s Curve',... 
           'Kaiser''s Criterion (K1) = 1.0',... 
          ['\bf',int2str(pchorns),... 
           ' \rm \lambda > Horn''s Curve > K1'],... 
          ['\bf',int2str(getp-pchorns-cpc),... 
           ' \rm \lambda < Horn''s Curve < K1'],... 
          ['\bf',int2str(cpc),... 
           ' \rm K1 < \lambda < Horn''s Curve'],... 
       'Location','NorthEast') 
elseif qflag == false;  %no contested points--both tests are in agreement 
    legend('Scree Line','Horn''s Curve',... 
           'Kaiser''s Criterion (K1) = 1.0',... 
          ['\bf',int2str(pchorns),... 
           ' \rm \lambda > Horn''s Curve > K1'],... 
          ['\bf',int2str(getp-pchorns),... 
           ' \rm \lambda < Horn''s Curve < K1'],... 
           'Location','NorthEast') 
end 
hold off 
fprintf('Done!\n') 
%send summary to the screen 
disp('*************************** Summary ******************************'); 

cr; 
if qcount > 1;  %qcount = #of contested eigenvalues for dimensionality 
                %because qcount is also a loop marker, #ev's = val -1 
    fprintf('Dimensionality is estimated at %d principal components 

by\n',pchorns) 
    fprintf('Horn''s test.  There are a total of %d eigenvalues below 

Horn''s\n',cpc) 
    disp(['curve and greater than K1.  These eigenvalues should be further' 

cr... 
          'evaluated against additional criteria for usefulness.' cr... 
          '(Additional criteria == qualitative and quantitative   ' cr... 
          'aspects of the study that are particular to a dataset, ' cr... 
          'purpose of the study, and analyst selection.)  ']);cr; 
    fprintf('\n') 
    fprintf('-->Component #: %d  Eigenvalue: %2.4f <--\n',[qx; qy]); 
    fprintf('\n') 
    fprintf('Proportion of total variance explained by Horn''s = 

%2.2f%%.\n',pctvar1); 
    fprintf('Additional proportion of total variance explained by the\n') 
    fprintf('contested "between the curves" components: %2.2f%%.\n',pctvar2) 
    fprintf('If %d contested components are included, proportion = 

%2.2f%%.\n',cpc,pctvar1+pctvar2) 
else 
    fprintf('Dimensionality is estimated at %d principal 

components.\n',pchorns) 
    fprintf('Proportion of total variance explained = %2.2f%%.\n',pctvar1) 
    fprintf('There are no contested components.\n') 
end 
disp('******************************************************************');  
fprintf('THE FILENAME USED IN THIS ANALYSIS IS %s  \n',filename) 
fprintf('\nEnd of processing.\n\n') 
% 
%end of script 
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Supporting Function: EigenMean.m 

 

function[meanev] = EigenMean(p,n,k) 

%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

%NOTE:  The comment lines above can be removed w/no loss of function help. 

%This function finds the mean eigenvalues for a n x p data set.  The mean 
%eigenvalues are useful for performing Principal Components Analysis and 
%are found through repeated iterations of normal random probability distri- 
%bution calls and subsequent determination of the correlation matrix of  
%size n x p.  The random number draws are done in Monte Carlo simulation 
%iterations of size k.  The function structure is: 
% 
%[meanev] = EigenMean(p,n,k)  
% 
%Inputs: p = # of variables; 
%        n = # of observations; 
%        k = # of Monte Carlo simulation iterations. 
% 
%Outputs: [meanev] is a return vector of size (1 x p) containing the  
%sorted and averaged eigenvalues by index (#eigenvalues = #variables).   
%All statistical assumptions are based upon data being distributed standard 
%normal (mean = 0, standard deviation = 1).  The correlation operator is 
%applied to the random data matrix before extracting the eigenvalues. 
% 
%**The function will warn when: 
%*1) p is overfitted to n; that is, n should be at least as large as p and  
%preferably 3p <= n.  Note that large values of k (>1000) will result in  
%long processing times, and in instances with large (p,n) combinations it  
%will appear that MATLAB has stopped responding. Therefore, unless utmost  
%precision in the mean eigenvalues result is needed, such as least-squares 
%model fitting where precise coefficient estimates must be made, consider  
%using k = 1000 (the default setting if k is not provided).  For curve  
%fitting using interpolation methods, k = 100 may prove satisfactory if p 
%is sufficiently large to "spread" the variation among more eigenvalues.   
%The tradeoff is more iterations push towards convergence of the true means 
%at the expense of processing time (minutes are not uncommon if p,n,k are  
%as small as a 500 each).  Longer times (hours) are not out the question if 
%the input parameters are in the thousands. 
%*2) If a warning regarding eigenvalue computations is received due to 
%non-real or singular results, check for lack of linear independence in the 
%input matrix columns.  One or more variables are dependent on another. 
% 
%(Function version a.o. 14 Jan 13) 

  
error(nargchk(2,3,nargin)) 
if nargin == 2              %need at least two inputs (p,n) 
    fprintf('(Using default MCS iterations k=100)\n') 
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    k = 100; 
end 

  
if p > n 
    fprintf('Data is overfitted (p>n).  Check your input.\n') 
    fprintf('Computations will complete but the smallest eigenvalues\n ') 
    fprintf('reduce to approximately zero.\n') 
end 
%get started; initialize variables 
mev = diag(zeros(p));               %size of eigenvalue mean accumulator  
                                    %variable 
for i=1:k 
    Q = normrnd(0,1,n,p);           %Generate Y--a random ~Norm(0,1)  
                                    %matrix of n x p size 
    Ry = corr(Q);                   %Correlation matrix of X  
    [Vy,Dy] = eig(Ry);              %Get (Vy) eigenvectors and  
                                    %(Dy) eigenvalues for correlation of Y 
    Dy = sort(diag(Dy),'descend');  %too big for 'eigs'; sort 'eig' result 
    mev = mev + Dy;                 %adds each eigenvalue by array index 
end 
% 
meanev = (mev.*(1/k))';             %return vector is the mean eigenvalues 
                                    %of the correlation matrix sorted by 
                                    %index 
% 
%end of function 



 

131 

 

Supporting Function: findcurves.m 

 

function [curves,nnup,nnlp,nnun,nnln] = findcurves(p,n,minp,maxp,minn,maxn) 
%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

% 

%Mean Eigenvalue Solution, Case I: 
% * Both the variable (p') and observation (n') is in the range of the    * 
% * lookup table mapped values.  Also, (p') and (n') are not the minimum  * 
% * nor maximum values in the table and the nearest neighbors method will * 
% * achieve satisfactory results.                                         * 
%  
%The function returns six curves to the main executable: 
%1) Upper nearest neighbor variable, lower nearest neighbor observation. 
%2) Interpolated curve for p', based upon upper p & lower/upper obs. 
%3) Upper nearest neighbor variable, upper nearest neighbor observation. 
%4) Lower nearest neighbor variable, lower nearest neighbor observation. 
%6) Interpolated curve for p', based upon lower p & lower/upper obs. 
%7) Lower nearest neighbor variable, upper nearest neighbor observation. 
% 
global tablex ssizep ssizen 
% 
rnnup = []; %init the data row variable; also acts as a flag to search 
rnnlp = []; %init the data row variable; also acts as a flag to search 
rnnun = []; %init the data row variable; also acts as a flag to search 
rnnln = []; %init the data row variable; also acts as a flag to search 
%************************************************************************** 
%******Check to see if data is already in the lookup table and at what***** 
%*extremes.  Data at or near an edge will need to be conditioned to accept* 
%*something else than what the nearest neighbor search algorithm assigns*** 
%******Variable assignment************************************************* 
[rp] = find(tablex(:,1) == p);  %look for the input variable 
if isempty(rp) == false;        %found p' in tablex but where is it? 
    %p' is the minimum variable 
    if p == minp;               %does p' = min table variable value? 
        nnlp = p;               %yes, assign lower neighbor to it 
        nnup = minp + ssizep;   %upper nearest neighbor is a stepsize up 
        rnnup = rp;             %abort the nnup, nnlp searches because 
        rnnlp = rp;             %variable assignments are made 
    %p' is the maximum variable 
    elseif p == maxp; 
        nnlp = maxp - ssizep;   %go a stepsize down for nnlp 
        nnup = p;               %already at highest variable value 
        rnnup = rp;             %abort the nnup, nnlp searches because 
        rnnlp = rp;             %variable assignments are made 
    %p' is somewhere in the middle; in this case, pass all known info fwd. 
    elseif p > minp && p < maxp 
        nnlp = p; 
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        nnup = p; 
        rnnup = rp; 
        rnnlp = rp; 
    end 
end 
% 
if isempty(rp) == true; %did not find p' in the lookup table; search! 
    ind = 0;                                    %reset the search index 
    while isempty(rnnup) && isempty(rp)         %run loop while empty 
        ind = ind+1;                            %incr the array counter 
        [rnnup] = find(tablex(:,1) == p+ind);   %add the index 
        if ind > ssizep;    %lookup table is corrupted 
            fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n') 
            rp = -1;        %value indicates we had a problem here. 
            break;          %let program critical stop 
        end 
    end 
    nnup = p+ind;                               %got the upper neighbor 
    %now find the lower nearest neighbor variable 
    ind = 0;                                    %reset the search index 
    while isempty(rnnlp) && isempty(rp)         %run loop while empty 
        ind = ind+1;                            %incr the array counter 
        [rnnlp] = find(tablex(:,1) == p-ind);   %subtract the index 
        if ind > ssizep;    %lookup table is corrupted 
            fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n') 
            rp = -2;        %value indicates we had a problem here. 
            break;          %let program critical stop 
        end 
    end 
    nnlp = p-ind;           %got the lower neighbor 
end              %exit out of looking for the variable neighbor indices 
% 
%truncate the data into a subset of tablex meaningful to the analysis 
%create sub-matrix S of only the rows of p(-) and p(+) 
S = [tablex(rnnup,:); tablex(rnnlp,:)]; 
trimp = find(S(end,:) > 0);  %inspect the last row because it's p(-) 
S = S(:,trimp); %eliminate sparsity in S; upper/lower vars equal length 
%S is the reduced matrix to work from for observation nearest neighbors**** 
%***********************Done with VARIABLES******************************** 
%***find the OBSERVATION nearest neighbors in the truncated data matrix S** 
%find the start of zero entries in the lower bound (nnlp) and then trim 
%each bound (upper and lower) to that length.  Purpose: set equal number of 
%variables in the vectors of matrix S 
[rn] = find(S(:,2) == n);       %look for the input observation 
if isempty(rn) == 0;            %found n in S but where is it? 
    %n is the minimum observation 
    if n == minn;               %is the input = min(S) value? 
        nnln = n;               %yes, assign lower neighbor to it 
        nnun = minn + ssizen;   %upper nearest neighbor is a stepsize up 
        rnnun = rn;             %abort the nnun, nnln searches 
        rnnln = rn;             % 
    %n is the maximum observation 
    elseif n == maxn; 
        nnln = maxn - ssizen;   %go a stepsize down for nnln 
        nnun = n;               %already at highest observation value 
        rnnun = rn;             %abort the nnun, nnln searches 
        rnnln = rn;             % 
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    %n is somewhere in the middle; in this case, pass all known info fwd. 
    elseif n > minn && n < maxn 
        nnln = n; 
        nnun = n; 
        rnnun = rn; 
        rnnln = rn; 
    end 
end 
% 
%search column 2 for the upper/lower bounds 
if isempty(rn) == 1 
    ind = 0;                                %reset the search index  
    while isempty(rnnun)                    %run loop while rnnup is empty 
        ind = ind+1;                        %...waiting to find a match 
        [rnnun] = find(S(:,2) == n+ind);    %ADD the index; search up from n 
    end 
    nnun = n+ind;                           %got a match! upper neighbor 
%now find the lower nearest neighbor variable 
    ind = 0;                                %reset the search index 
    while isempty(rnnln)                    %run loop while rnnlp is empty 
        ind = ind+1;                        %...waiting to find a match 
        [rnnln] = find(S(:,2) == n-ind);    %SUB the index; search dn from n 
    end 
    nnln = n-ind;                           %got a match! lower neighbor 
end 
% 
%check for being on the diagonal n = p 
if nnln == nnlp && nnun == nnup 
    nnln = nnun;            %lower takes same obs. value as upper 
    [rnnln] = find(S(:,2) == nnln); 
end 
%truncate data one more time; subset of S meaningful to the analysis 
%in between rows 2 and 3 is the solution for (getp,getn) 
Y = [S(rnnln(1),:);  
     S(rnnun(1),:);  
     S(rnnln(2),:);  
     S(rnnun(2),:)]; 
%************************************************************************** 
%interpolation: find getn y-coordinate (mean eigenvalues) given a single 
%x-coordinate.  This is a an inverse use of the interp1 function, as it 
%wants a unique x value for each y.  Because the x-value is fixed along the 
%curve (essentially the upper nearest neighbor and lower nearest neighbors 
%are defining the curve), the interp1 routine used here has to cycle 
%through a pair of points defined at the upper and lower nn observations. 
%format is (ev=mean eigenvalue in all cases): 
%ev we want to find = interp1([fixed lower nn obs; fixed upper nn obs],... 
%                             [lower ev @ this x; upper ev @ this x],... 
%                             observation we are trying to find) 
%this routine handles the 'bias' factor; that is, how close getn is to 
%either the upper or lower nearest neighbors impacts the  
ncol = length(Y(1,3:end));  %number of y-data columns (contains mean ev's) 
                            %DO NOT USE ncol FOR PLOTTING--IT IS OFF BY 2 
evu = zeros(1,ncol);        %preallocate space 
evl = zeros(1,ncol);        %preallocate space 
getev = zeros(1,ncol);      %preallocate space 
%************************************************************************** 
%the logic in the following if/elseif lines evaluates four conditions for 
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%(p,n): The combinations that p and n are direct references in tablex. 
%************************************************************************** 
%(p,n) not in lookup tablex; interpolate a two-part solution. 
%Part 1: Upper and lower curves.  Interpolate nnln, nnun variables for n 
%Part 2: Middle curve (the answer!).  Using the curves from Part 1 as 
%        input, interpolate the variable curve in between nnup and nnlp. 
%OR statement is (p,n) was on diagonal and corrections made (~line 171) 
if (isempty(rn) == 1 && isempty(rp) == 1) && ~(nnln == nnun) 
    for i = 1:ncol;         %loop through the data; interpolate mev values 
                            %for ev([u]pper) and ev([l]ower) curves 
        evu(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n);  %upper ev's 
        evl(i) = interp1([nnln;nnun],[Y(3,2+i);Y(4,2+i)],n);  %lower ev's 
    end 
    %getev is the solution for the curve describing (p,n) 
    for i = 1:ncol 
        getev(i) = interp1([nnup;nnlp],[evu(i);evl(i)],p); 
    end 
%p is in tablex; n is not.  Get (p,nnun) and (p,nnln) to interp a soln 
elseif isempty(rn) == 1 && isempty(rp) == 0; 
    for i = 1:ncol;         %loop through the data; interpolate ev's 
        getev(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n); 
    end 
    evu = getev;            %already had the variable, only needed the  
    evl = getev;            %interpolation on the observations 
%p is not in tablex, n is.  Get (nnlp,n) and (nnup,n) to interp a soln 
%OR statement is (p,n) was on diagonal and corrections made (~line 171) 
elseif (isempty(rn) == 0 && isempty(rp) == 1) || nnln == nnun &&... 
        ~(nnlp == nnup) 
    evu = Y(1,3:end); 
    evl = Y(3,3:end); 
    for i = 1:ncol; 
        getev(i) = interp1([nnup;nnlp],[evu(i);evl(i)],p); 
    end 
%(p,n) are both in the table.  Direct referenced value--no interpolation 
else isempty(rn) == 0 && isempty(rp) == 0; 
    evu = Y(1,3:end); 
    evl = evu; 
    getev = evu; 
end 
% 
curve1 = Y(1,3:end);        %nnun mev's for nnup 
curve2 = evu;               %interpolated mev's for getn on nnun 
curve3 = Y(2,3:end);        %nnun mev's for nnlp 
curve4 = getev;             %interpolated mev's for getp 
%curve5 = mevvec(1:eind);   %from the MCS run; function EigenMean provides 
curve6 = Y(3,3:end);        %nnln mev's for nnlp 
curve7 = evl;               %interpolated mev's for getn on nnln 
curve8 = Y(4,3:end);        %nnun mev's for nnlp 
%curve5 will not be seen in the function return matrix 
curves = [curve1; curve2; curve3; curve4; curve6; curve7; curve8]; 
% 
%end of function 
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Supporting Function: findcurves2OM.m 

 

function [curves,nnup,nnlp,nnun,nnln]=findcurves2OM(p,n,minp,maxp,minn,maxn) 
%Original code by Captain Andrew L. Bigley, USAF.  Written for partial 

%fulfillment of a Master's of Science Degree in Operations Research, The  

%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA 

%US Government disclaimer: 

%The views expressed in this thesis are those of the author and do not 

%reflect the official policy or position of the United States Air Force, 

%Department of Defense, or the United States Government. 

%This material is declared a work of the U.S. Government and is not subject 

%to copyright protection in the United States. 

%21 March 2013 

% 

%Linear regression second-order model, Case I: 
% * Both the variable (p') and observation (n') is in the range of the    * 
% * lookup table mapped values.  Also, (p') and (n') are not the minimum  * 
% * nor maximum values in the table and the nearest neighbors method will * 
% * achieve satisfactory results.                                         * 
%  
%The function returns six curves to the main executable: 
%1) Upper nearest neighbor variable, lower nearest neighbor observation. 
%2) Interpolated curve for p', based upon upper p & lower/upper obs. 
%3) Upper nearest neighbor variable, upper nearest neighbor observation. 
%4) Lower nearest neighbor variable, lower nearest neighbor observation. 
%6) Interpolated curve for p', based upon lower p & lower/upper obs. 
%7) Lower nearest neighbor variable, upper nearest neighbor observation. 
% 
global tablexbeta ssizep ssizen 
% 
rnnup = []; %init the data row variable; also acts as a flag to search 
rnnlp = []; %init the data row variable; also acts as a flag to search 
rnnun = []; %init the data row variable; also acts as a flag to search 
rnnln = []; %init the data row variable; also acts as a flag to search 
%************************************************************************** 
%******Check to see if data is already in the lookup table and at what***** 
%*extremes.  Data at or near an edge will need to be conditioned to accept* 
%*something else than what the nearest neighbor search algorithm assigns*** 
%******Variable assignment************************************************* 
[rp] = find(tablexbeta(:,1) == p);  %look for the input variable 
if isempty(rp) == 0;            %found p in tablex but where is it? 
    %p is the minimum variable 
    if p == minp;               %is the input = min table variable value? 
        nnlp = p;               %yes, assign lower neighbor to it 
        nnup = minp + ssizep;   %upper nearest neighbor is a stepsize up 
        rnnup = rp;             %abort the nnup, nnlp searches 
        rnnlp = rp;             % 
    %p is the maximum variable 
    elseif p == maxp; 
        nnlp = maxp - ssizep;   %go a stepsize down for nnlp 
        nnup = p;               %already at highest variable value 
        rnnup = rp;             %abort the nnup, nnlp searches 
        rnnlp = rp;             % 
    %p is somewhere in the middle; in this case, pass all known info fwd. 
    elseif p > minp && p < maxp 
        nnlp = p; 
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        nnlp = p; 
        nnup = p; 
        rnnup = rp; 
        rnnlp = rp; 
    end 
end 
% 
if isempty(rp) == 1 
    ind = 0;                                    %reset the search index 
    while isempty(rnnup) && isempty(rp)         %run loop while empty 
        ind = ind+1;                            %incr the array counter 
        [rnnup] = find(tablexbeta(:,1) == p+ind);   %add the index 
        if ind > ssizep 
            fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n') 
            rp = -1;    %value indicates we had a problem here. 
            break 
        end 
    end 
    nnup = p+ind;                               %got the upper neighbor 
    %now find the lower nearest neighbor variable 
    ind = 0;                                    %reset the search index 
    while isempty(rnnlp) && isempty(rp)         %run loop while empty 
        ind = ind+1;                            %incr the array counter 
        [rnnlp] = find(tablexbeta(:,1) == p-ind);   %subtract the index 
        if ind > ssizep 
            fprintf('WARNING: Variable stepsize exceeded. Check tablex.\n') 
            rp = -2;    %value indicates we had a problem here. 
            break 
        end 
    end 
    nnlp = p-ind;                               %got the lower neighbor 
end              %exit out of looking for the variable neighbor indices 
% 
%truncate the data into a subset of tablex meaningful to the analysis 
S = [tablexbeta(rnnup,:); tablexbeta(rnnlp,:)]; 
%S is the reduced matrix to work from for observation nearest neighbors**** 
%***********************Done with VARIABLES******************************** 
%***find the OBSERVATION nearest neighbors in the truncated data matrix S** 
%find the start of zero entries in the lower bound (nnlp) and then trim 
%each bound (upper and lower) to that length.  Purpose: set equal number of 
%variables in the vectors of matrix S 
[rn] = find(S(:,2) == n);       %look for the input observation 
if isempty(rn) == 0;            %found n in S but where is it? 
    %n is the minimum observation 
    if n == minn;               %is the input = min(S) value? 
        nnln = n;               %yes, assign lower neighbor to it 
        nnun = minn + ssizen;   %upper nearest neighbor is a stepsize up 
        rnnun = rn;             %abort the nnun, nnln searches 
        rnnln = rn;             % 
    %n is the maximum observation 
    elseif n == maxn; 
        nnln = maxn - ssizen;   %go a stepsize down for nnln 
        nnun = n;               %already at highest observation value 
        rnnun = rn;             %abort the nnun, nnln searches 
        rnnln = rn;             % 
    %n is somewhere in the middle; in this case, pass all known info fwd. 
    elseif n > minn && n < maxn 
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        nnln = n; 
        nnun = n; 
        rnnun = rn; 
        rnnln = rn; 
    end 
end 
% 
%search column 2 for the upper/lower bounds 
if isempty(rn) == 1 
    ind = 0;                                %reset the search index  
    while isempty(rnnun)                    %run loop while rnnup is empty 
        ind = ind+1;                        %...waiting to find a match 
        [rnnun] = find(S(:,2) == n+ind);    %ADD the index; search up from n 
    end 
    nnun = n+ind;                           %got a match! upper neighbor 
%now find the lower nearest neighbor variable 
    ind = 0;                                %reset the search index 
    while isempty(rnnln)                    %run loop while rnnlp is empty 
        ind = ind+1;                        %...waiting to find a match 
        [rnnln] = find(S(:,2) == n-ind);    %SUB the index; search dn from n 
    end 
    nnln = n-ind;                           %got a match! lower neighbor 
end 
% 
%check for being on the diagonal n = p 
if nnln == nnlp && nnun == nnup 
    nnln = nnun;            %lower takes same obs. value as upper 
    [rnnln] = find(S(:,2) == nnln); 
end 
%truncate data one more time; subset of S meaningful to the analysis 
%in between rows 2 and 3 is the solution for (getp,getn) 
Y = [S(rnnln(1),:);  
     S(rnnun(1),:);  
     S(rnnln(2),:);  
     S(rnnun(2),:)]; 
%************************************************************************** 
%interpolation: find getn y-coordinate (coefficients) given a single 
%x-coordinate.  This is a an inverse use of the interp1 function, as it 
%wants a unique x value for each y.  Because the x-value is fixed along the 
%curve (essentially the upper nearest neighbor and lower nearest neighbors 
%are defining the curve), the interp1 routine used here has to cycle 
%through a pair of points defined at the upper and lower nn observations. 
%format is (ev=mean eigenvalue in all cases): 
%ev we want to find = interp1([fixed lower nn obs; fixed upper nn obs],... 
%                             [lower ev @ this x; upper ev @ this x],... 
%                             observation we are trying to find) 
%this routine handles the 'bias' factor; that is, how close getn is to 
%either the upper or lower nearest neighbors impacts the  
%ncol = length(Y(1,3:end));  %number of y-data columns (contains coeffs) 
                            %DO NOT USE ncol FOR PLOTTING--IT IS OFF BY 2 
ncol = 3;                   %already know how many columns have beta val. 
cu = zeros(1,ncol);         %preallocate space 
cl = zeros(1,ncol);         %preallocate space 
getbeta = zeros(1,ncol);    %preallocate space 
%************************************************************************** 
%the logic in the following if/elseif lines evaluates four conditions for 
%(p,n): The combinations that p and n are direct references in tablex. 
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%************************************************************************** 
%(p,n) not in lookup tablex; interpolate a two-part solution. 
%Part 1: Upper and lower curves.  Interpolate nnln, nnun variables for n 
%Part 2: Middle curve (the answer!).  Using the curves from Part 1 as 
%        input, interpolate the variable curve in between nnup and nnlp. 
%OR statement is (p,n) was on diagonal and corrections made (~line 171) 
if (isempty(rn) == 1 && isempty(rp) == 1) && ~(nnln == nnun) 
    for i = 1:ncol;         %loop through the data; interpolate beta values 
                            %for coeff([u]pper) and coeff([l]ower) curves 
        cu(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n);  %upper  
        cl(i) = interp1([nnln;nnun],[Y(3,2+i);Y(4,2+i)],n);  %lower  
    end 
    %getev is the solution for the curve describing (p,n) 
    for i = 1:ncol 
        getbeta(i) = interp1([nnup;nnlp],[cu(i);cl(i)],p); 
    end 
%p is in tablex; n is not.  Get (p,nnun) and (p,nnln) to interp a soln 
elseif isempty(rn) == 1 && isempty(rp) == 0; 
    for i = 1:ncol;         %loop through the data; interpolate ev's 
        getbeta(i) = interp1([nnln;nnun],[Y(1,2+i);Y(2,2+i)],n); 
    end 
    cu = getbeta;            %already had the variable, only needed the  
    cl = getbeta;            %interpolation on the observations 
%p is not in tablex, n is.  Get (nnlp,n) and (nnup,n) to interp a soln 
%OR statement is (p,n) was on diagonal and corrections made (~line 171) 
elseif (isempty(rn) == 0 && isempty(rp) == 1) || nnln == nnun &&... 
        ~(nnlp == nnup) 
    cu = Y(1,3:5); 
    cl = Y(3,3:5); 
    for i = 1:ncol; 
        getbeta(i) = interp1([nnup;nnlp],[cu(i);cl(i)],p); 
    end 
%(p,n) are both in the table.  Direct referenced value--no interpolation 
else isempty(rn) == 0 && isempty(rp) == 0; 
    cu = Y(1,3:5); 
    cl = cu; 
    getbeta = cu; 
end 
% 
%return the curve describing the lines, not just the coefficients of the 
%model 
xfine = 1:p;                   %0.1 controls the fidelity in the curve 
                                    %to decrease, try 0.2 to 0.5 
curve1 = polyval(Y(1,3:5),xfine);   %nnun betas for nnup 
curve2 = polyval(cu,xfine);         %interpolated betas for getn on nnun 
curve3 = polyval(Y(2,3:5),xfine);   %nnun betas for nnlp 
curve4 = polyval(getbeta,xfine);    %interpolated betas for getp 
%curve 5 not used in the 2OM evaluation 
curve6 = polyval(Y(3,3:5),xfine);   %nnln betas for nnlp 
curve7 = polyval(cl,xfine);         %interpolated betas for getn on nnln 
curve8 = polyval(Y(4,3:5),xfine);   %nnun betas for nnlp 
curves = [curve1; curve2; curve3; curve4; curve6; curve7; curve8]; 
% 
%end of function 
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Reader : Lt Col Mark A. Friend 
Department of Operational Sciences (ENS) 

Air Force Institute of Technology 

Methodology 

Criteria for a candidate stopping rule: 

•Visual, Accurate dimensionality estimator, 
Leads to objective assessments 

Step 1: Survey the literature for candidates 

·Three techniques located; Horn's test 
selected due to accuracy & positive oval. 

• Number and sizes of published research 
indicate region-of.interest (ROI) is within 
5 S p S 1000 and 5 S n S 7000 (captures 
80.3% of the 178 studies surveyed) 

Step 3: Develop Horn's test theory into 
MATLAB algorithms. Horn's methodology 
separates noise from signal by considering 
inherent random error from useful 
information in the sample scree line 

- - I 

·Horn's methodology requires two distinct 
elements (sampled & random data) 

• The final solution is a synthesis of both 
brought together 

• Two solution strategies, similar methods 
• Mean eigenvalues 
·Linear regression second-order model 

•Monte Carlo simulation of random data 

\//)(0. 1 .) ""'(' 
:I.~ lj . \ 

• Eigendecomposition of corrh ) 
•Lookup table of sparse, preprocessed data 
(196 hrs CPU time for 26,650 x 1002 matrix, 
80MB; regression compacts to < 1 MB) 

•Lookup tables nearest neighbor search 
·Two-part piecewise linear interpolation 
Step 4: Bring both elements together & 
display graphical and tabulated summary 
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